
Inuit: from printf to interactive user-interfaces
Frédéric Bour

OCL, University of Cambridge

Introduction

As OCaml doesn’t favor introspection, long-running
processes risk turning into black boxes.
Common solutions to observe internal state are
printf-debugging/logging or relying on heavier GUI
toolkits. The former is limited; the latter is harder
to develop and has higher requirements.
Inuit extends the printf approach and narrow the gap
with GUI toolkits.
It aims at exposing a model that is:
• easy to use for interactive monitoring, tracing, and
configuration of services;
• good enough for simple text-based UI.

Programming model

Inuit is a library to build and update a semi-
structured text document.
The central concept is the region. A region ab-
stracts a range of characters and can contain sub-
regions. The following primitives can be applied:
• append inserts text;
• clear erases everything in the region;
• sub creates and returns a new sub-region.
From a root region and these primitives one can
build and update a tree of textual regions.

Rendering the document

Inuit keeps track of the document structure and turns
the content into simple patches – a patch inserts,
removes or replaces a range of text. Text itself is not
stored by Inuit. A backend consumes the stream of
patches.
This design makes it easy to switch between back-
ends. The default one serializes patches to a channel,
to be consumed by external processes. No depen-
dency are introduced.

Region API

type ’flags t
(** Type of a region.

’flags are associated to text content . They don ’t affect the document
structure but allow to extend the text with backend specific information
(styling , interactions , etc). *)

val append : ’flags t → ’flags list → string → unit
(** Add text to the right end of the region. *)

val clear : ’flags t → unit
(** Erase the content , including sub - regions . *)

val sub : ? observer :’flags observer → ’flags t → ’flags t
(** Append a new sub -region. Multiple calls to sub form a tree of regions .

[observer] is a callback that allow to observe changes . *)

val make : unit → ’flags t * ’flags patch socket
(** Creating a root region. It also returns the patch stream for the backend . *)

Flexible deployment

The only backend available today displays content in
Emacs. The UI is presented in a buffer. Communi-
cation is done with a custom sexp-based protocol.
Different setups are supported:
Commands communicating over stdin/stdout.
Services listening on a UNIX Domain Socket.
Remote display. The protocol handles long latencies

well. Applications can run transparently over a
network connection such as SSH.

Extended features

Extra information is communicated via flags. They
don’t affect the structure, just the interaction. If a
flag is not supported by a backend, functionalities are
degraded but the content remains available.
A reasonable set of flags is still being devised. Cur-
rent implementation includes clickable and editable
areas, focus management, and custom face selection.

Simple trace

append root “Current time is “;;

let time = sub root;;

append time “11:59”;;

clear time;;

append time “12:00”;;

root region:

Current time is

Current time is

Current time is

Current time is 11:59

Current time is 12:00

Practical applications

A few applications have been developed to validate
the library.
Top-level integration, a replayable trace library, a
frontend for interactive fictions. Introspection for
Merlin (state monitoring, interactive logging).
Frontends for OCaml tools: landmarks and spacetime
profilers and ocp-index library browser.

Rendering pipeline details

 5. optional: conflict resolution

Inuit

User-code

1. regions 16 chars 5 chars

2. abstract positions root.left root.righttime.left ...right

3. physical positions 0 16 21

Frontend API

4. Patches:

insert 0 16 “Current time is “

insert 16 5 “12:00“

remove 16 5

...

Backend

Inuit exposes regions (1), forming a tree of nested
positions (2). Positions can be mapped to physical
offsets (3). User actions update this tree and are
turned into a stream of patches (4).
Since backend might executes asynchronously, an op-
tional conflict resolution pass can be applied (5).

Future work

A TTY backend is planned for development soon.
A NeoVim backend is being considered too, but
cleaning up the protocol specification and providing
stronger typing is a prerequisite.
Among possible applications for Inuit we would like
to experiment hyper-linked navigation in OCaml doc-
umentation.

Implementation prototype

The library is licensed under ISC license.
Development happens on github:
Inuit library: github.com/let-def/inuit
Emacs backend: github.com/let-def/sturgeon

https://github.com/let-def/inuit
https://github.com/let-def/sturgeon

