
A friendly UI toolkit for the ML-programmer

Frédéric Bour, Tarides
ML 2020 workshop, August 27th 2020

• Nottui
“Notty UI”
• Terminal output
• Keyboard/mouse input

• Lwd
“Lightweight document”
a form of incremental computation

Notty UI: drawing user interfaces in the terminal

An OCaml library for “Declaring terminals”, by David Kaloper Meršinjak.
https://github.com/pqwy/notty/

Solves two problems:
• Making “terminal images”, with a set of pure combinators
• Managing UNIX TTYs (terminal devices):

• setup and restore terminal contents
• render images
• pump events (keyboard input, mouse movements, display resize...)

• Primitive images: styled characters and strings

• Make complex images by combining simpler images:
• horizontal and vertical concatenation
• superposition
• cropping, ...

Very functional, a pleasure to work with :-)

• Fixed size: all images have a fixed width and height.
• But the display size is not known in advance
• ... and the content size might also vary dynamically

• Only visual information.
We would like to attach extra behaviors to the structure of the image:

• reacting to mouse events
• focusable areas
• ...

Draw inspiration from TeX boxes and glue model:
fixed size objects & stretchable spaces (springs)

Each dimension (width or height) is a pair of integers:
type dimension = { fixed : int; stretch : int }

Fixed a number of columns (or rows), reserved for the object
Stretch a factor to determine of remaining space is split among objects

Layout for :

1. Start from line width, say 20 total = 20
2. Subtract all fixed dimension remaining = total - fixed(Hello) - fixed(World)

remaining = 20 - 5 - 5
remaining = 10

3. Sum all stretch dimension total stretch = 2 + 1 + 2
total stretch = 5

4. Give a ratio of remaining space remaining * object stretch / total stretch

stretch=2 → 10 * 2 / 5 = 4 whitespaces
stretch=1 → 10 * 1 / 5 = 2 whitespaces

stretch=2
Hello

stretch=1 World stretch=2

␣␣␣␣Hello␣␣World␣␣␣␣

• Composable specification:

• Decomposable solution:

• Associativity: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

Hello
stretch=1

⊕
fixed=0

stretch=1
fixed=5

stretch=0
fixed=5

stretch=1=

fixed=5
stretch=1
space=8

= ⊕
fixed=0

stretch=1
space=3

fixed=5
stretch=0
space=5

• Simple yet expressive
Represent left, centered, right, justified text, easily emulate some flexbox-like layout, ...

• Efficient and suitable for incremental updates
All basic operations are O(1), can be rebalanced thanks to associativity.

• Straightforward implementation:
• smart constructors for specification
• direct recursion for decomposing solution

Behaviors to attach to Notty images:
• focus: input field, “Ok” and “Cancel” buttons can be made active
• keyboard input:

• pressing “tab” should switch between focus receivers
• if input field is active, it should receive key presses
• if a button is active, pressing enter should trigger it

• mouse click: ...

Extra constructors for non-visual behaviors:
type mouse_handler = x:int -> y:int -> button ->
 [`Handled | `Unhandled]
val mouse_area : mouse_handler -> ui -> ui
val focus_area, size_sensor : ...

Nottui = Notty
+ Layout DSL
+ Event dispatch / context probing

Still about static images: no way to update display from events.

adding interactivity

Not a new problem:

The DOM: make everything mutable (change children, change attribute).

Pros: regularity
Cons: prone to spaghetti code

Terminal Web
Syntax Nottui.ui HTML

Interactivity ? DOM

Not a new problem:

Terminal Web
Syntax Nottui.ui HTML

Interactivity ? DOM

Not a new problem:

Use a type transformer: ui Lwd.t is a “ui” value that can change over time.

Terminal Web
Syntax Nottui.ui HTML

Interactivity Nottui.ui Lwd.t DOM

type ‘a Lwd.var
val var : ‘a -> ‘a Lwd.var
val set : ‘a Lwd.var -> ‘a -> unit
val peek : ‘a Lwd.var -> ‘a

Just like an ML reference, “’a ref”. But...

val get : ‘a Lwd.var -> ‘a Lwd.t

get introduces a “changing value”: a value that is updated when the variable is mutated.

type ‘a Lwd.t
val pure : ‘a -> ‘a Lwd.t
val map : (‘a -> ‘b) -> ‘a Lwd.t -> ‘b Lwd.t
val map2 : (‘a -> ‘b -> ‘c) -> ‘a Lwd.t -> ‘b Lwd.t -> ‘c Lwd.t

Also a monad:

val join : ‘a Lwd.t Lwd.t -> ‘a Lwd.t

type ‘a Lwd.root

val observe : ‘a Lwd.t -> ‘a Lwd.root
val sample : ‘a Lwd.root -> ‘a
val release : ‘a Lwd.root -> unit

Evaluation strategy:
• sample only re-evaluates parts of a computation for which at least one variable was set.
• it only cares about dependencies, not about values (e.g., use “unit Lwd.var” for events).

type syntax =
 | Text of string
 | Link of syntax * (unit -> unit)
 | Cat of syntax * syntax

let label = Text “Click to increment: “
let counter = ref 0
let on_click () = counter := !counter + 1
let link =
 Link (Text (string_of_int !counter), on_click)
let document = Cat (label, link)

Click to increment: 0

type syntax =
 | Text of string
 | Link of syntax * (unit -> unit)
 | Cat of syntax * syntax

let label = Text “Click to increment: “
let counter = Lwd.var 0
let on_click () = Lwd.set counter (Lwd.peek counter + 1)
let link =
 Link (Text (string_of_int !counter), on_click)
let document = Cat (label, link)

Click to increment: 0

type syntax =
 | Text of string
 | Link of syntax * (unit -> unit)
 | Cat of syntax * syntax

let label = Text “Click to increment: “
let counter = Lwd.var 0
let on_click () = Lwd.set counter (Lwd.peek counter + 1)
let link = Lwd.map
 (fun c -> Link (Text (string_of_int c), on_click)) (get counter)
let document = Lwd.map (fun l -> Cat (label, l)) link

Click to increment: 0

type syntax =
 | Text of string
 | Link of syntax * (unit -> unit)
 | Cat of syntax * syntax

let label = Text “Click to increment: “
let counter = Lwd.var 0
let on_click () = Lwd.set counter (Lwd.peek counter + 1)
let link = Lwd.map
 (fun c -> Link (Text (string_of_int c), on_click)) (get counter)
let document = Lwd.map (fun l -> Cat (label, l)) link

Click to increment: 0

type syntax =
 | Text of string
 | Link of syntax * (unit -> unit)
 | Cat of syntax * syntax

let label = Text “Click to increment: “
let counter = Lwd.var 0
let on_click () = Lwd.set counter (Lwd.peek counter + 1)
let link = Lwd.map
 (fun c -> Link (Text (string_of_int c), on_click)) (get counter)
let document = Lwd.map (fun l -> Cat (label, l)) link

Click to increment: 1

• Self adjusting computations / Janestreet’s Incremental:
• Lwd is only about dependencies, not values: no need to check for equality or memoize
• Lwd is about observing and reacting to updates,
• Incremental is about speeding up evaluation of a pure function, the change should not be

observable from within the computation
• In practice: Lwd is really just a subset, with simpler evaluation strategy, smaller overhead, but

more recomputation

• React.js:
React.js is an abstraction over the DOM, Lwd aims to replace the DOM:
React.js could use Lwd as a backend!

• Svelte.js:
I did not know about it, thanks to reviewers for pointing it out!
It is very similar: same intention, different implementation.
I am looking forward to their progress.

• Synchronous and asynchronous main loops:
val Ui_loop.run : ?quit:bool Lwd.var -> ui Lwd.t -> unit
val Nottui_lwt.run : ?quit:unit Lwt.t -> ui Lwd.t -> unit Lwt.t

• Incremental collections
• Lwd_table: mutable, doubly-linked list
• Lwd_seq: immutable, pure-tree
• Observe them by doing map/reduce (monoid homormophism)
• Incremental and efficient: minimal recomputation

• Nottui_pretty: live pretty-printing
• Incremental version of Pottier & Pouillard / Leijen / Wadler lineage of pretty printers.
• Can print any widget and not just text, layout with DSL and not just whitespace.
• Cons: different from Format (OCaml built-in pretty-printer)

• Nottui & Lwd are two 100% OCaml libraries for making user interfaces.

• Compose well (so far)

• Handle quite complex user interfaces.

Polish current implementation:

• cleanup: resource management, context probing
• widgets: blessed set of default widgets (WIP)

Target the web:

• Manage the DOM with Lwd
• Share libraries between native and web UIs, expose similar interface

Open question: bidirectional data-bindings?

Thanks to Simon Cruanes and Enguerrand Decorne for being early adopters.

Thanks to you for watching!

Do you have any questions?

