
Nottui & Lwd: A friendly UI toolkit for the ML-programmer

Frédéric Bour, Tarides

September 6, 2020

Abstract

Lwd & Nottui are two small libraries that together help
making terminal user interfaces.

We are targeting “developer UI”, not general purpose ap-
plications. When possible, we favor convenience over ex-
pressiveness. In other words we want to fill the gap be-
tween non-interactive, printf-based debugging and log-
ging, and rich interactive applications. One step above
batch logging, without being too intrusive.

In this presentation we will review the design of the li-
braries and demonstrate some interesting features and ap-
plications.

1 Nottui

Nottui extends the Notty library. Notty is a library for doing
“declarative terminal graphics”. It provides a set of well-
crafted combinators to build terminal images: a matrix of
styled characters that can be efficiently and faithfully dis-
played on a computer terminal.

It is very convenient for displaying information, but it
falls short for user-interfaces. Nottui covers two new as-
pects: layout and event dispatch.

1.1 Layout

When writing user interfaces, one generally doesn’t care
about manually positioning each component. Notty offers
horizontal and vertical concatenation operators for plac-
ing images next to each other. Notty images are boxes with
a fixed width and height. But in general, a user interface
does not control the exact surface on which it will be dis-
played. It must accommodate to the actual dimension of
the display.

Nottui loosely borrows from the box and glue model of
TeX (see Beebe [2009]). Width is specified by a pair of in-
tegers (w, sw). w is the minimum width, expressed as a
number of columns, and sw is the stretchable width:

• if set to 0, the box has a fixed width

• when the display is larger than the sum of all mini-
mum widths, the sum Sw of all stretchable widths is
computed and each stretchable box is offered a frac-
tion sw/Sw of the remaining space.

sw can be interpreted as the strength of a spring that cov-
ers free space. Similarly, height is specified by a pair (h, sh)
of minimum and stretchable heights.

This model is expressive enough to cover centered and
aligned text, flexbox-like layouts, and even text justifica-
tion (provided that line breaking has already been done).

1.2 Event dispatch

Producing an image is a one way process: we don’t expect
any feedback from the viewer of the image. But a user-
interface should allow interactions with the visual com-
ponents. We extend Notty images with new constructors
that take callbacks that will be used to channel informa-
tion from the renderer back to the program.

These fall in two main categories:

User interactions. Keyboard or mouse events, as well as
some more “semantic events” such as focus and clip-
board management.

Context probing. Some UI patterns need to know the ac-
tual size of the physical display (for instance to prop-
erly render scroll bars).
Others, such as mouse dragging, need to query the
positioning of components. These situations depend
on the physical layout.

So callbacks are used to transmit information that can only
be known after the UI is fully composed: after layout, and
after rendering, when the user starts acting on UI compo-
nents.

1.3 Still declarative

All these features are represented by a single datatype that
extends Notty images. Here is a simplified version1:

type dimension = { fixed : int; stretchable: int }
type ui =

| Atom of image
| Size_sensor of ui * (w:int -> h:int -> unit)
| Resize of ui * dimension * dimension
| Mouse_handler of ui * (unit -> bool)
| X of ui * ui
| Y of ui * ui

1We have hidden a caching layer as well as some constructors dealing
with modal windows and focus.

1

https://github.com/let-def/lwd
https://github.com/pqwy/notty/


Leaves are images of the Notty library and internal
nodes represent different ways to transform and compose
them:

• Size_sensor (ui, f) adds a callback that will be
invoked when the display width and height is known

• Resize (ui, width, height) specifies a custom
layout. Otherwise, layout is derived from Atom nodes
that can only express fixed width and height.

• Mouse_handler (ui, f) adds a callback that is in-
voked when the user clicks on the space where ui
is displayed. The callback can choose whether the
event is consumed or not. If not, it propagates to the
next Mouse_handler in the branch, if any.

This datatype is central to the Nottui library and to the
ease of reasoning it offers. Values are immutable and
combinators compose freely, without introducing corner-
cases.

The concrete implementation deviates a bit from this
definition but retains the nice composability properties.
For performance reasons, each internal node propagates
the layout information and introduces a caching layer.
Fortunately for the user of the library, these changes does
not introduce any new observable behavior and are im-
plemented with smart constructors that do not change the
asymptotic complexity (constructing a node is an O(1) op-
eration).

1.4 Dynamic documents?

So far we were able to preserve the declarative nature of
Notty while extending it to better suit user interface pur-
poses. However we are still limited to static documents:
they can be rendered and the program can be notified of
interesting events, but there is no way to provide visual
feedback and update the display.

Dealing with such changes is the work of Lwd:

• Nottui focuses on the document representation

• Lwd focuses on efficient and coherent updates

2 Lwd, lightweight documents

Changing the content of user interfaces has always been
a central problem of UI libraries. Lwd draws inspiration
from two approaches:

• Object-oriented toolkits that generally rely on a big
mutable tree. Then they track the mutations and up-
date the display accordingly.

• Self-Adjusting Computations introduced by Acar
[2005], and in particular the Incremental implemen-
tation. These tools allow to implement computations
that efficiently handle changes to their input.

Lwd can be seen as a generic and reusable presentation of
the mutation tracking of OOP toolkits. Or as a very limited
form of Self-Adjusting Computation.

To avoid revisiting the whole tree, OOP toolkits store a
few bits of information in each node to determine which
properties are out-of-date. Changing the width a child can
affect the layout of the parent that, in turn, can move all
other nodes. Doing that naively would be detrimental to
performance: consecutive local changes would trigger a
lot of global recomputations. Thus, these operations tend
to be done lazily, to batch as many changes as possible in
a single computation.

SAC captures very general patterns of computations
sensitive to changes of input values. Lwd captures just the
subset that coincides with the way invalidation tend to be
tracked in object-oriented toolkits: when in doubt, throw
away the previous work. It doesn’t try to memoize inter-
mediate values and thus does not need to test equality or
compute “diffs”. Update scheduling is trivial: one invali-
dation pass, one evaluation pass. Book-keeping overhead
is minimal.

This works because in our setting we don’t mind re-
computing things that might have changed: constructors
are O(1), so deciding whether we should apply one or not
doesn’t affect the asymptotic complexity. However it is im-
portant to not visit the parts of the tree that have surely not
changed, as they could be arbitrarily big.
Lwd takes the form of a monad although most of the

time applicative style described by Conor McBride [2007]
is sufficient and encouraged:

type +’a Lwd.t
val pure : ’a -> ’a Lwd.t
val map : (’a -> ’b) -> ’a Lwd.t -> ’b Lwd.t
val map2 : (’a -> ’b -> ’c) ->

’a Lwd.t -> ’b Lwd.t -> ’c Lwd.t
...
val join : ’a Lwd.t Lwd.t -> ’a Lwd.t

A value of type ’a Lwd.t can be thought of as a value of
type ’a that can change over time. Primitive changes are
introduced by the var type:

type ’a Lwd.var
val get : ’a Lwd.var -> ’a Lwd.t
val set : ’a Lwd.var -> ’a -> unit
val peek : ’a Lwd.var -> ’a

var is the equivalent of builtin ref type lifted to the Lwd
monad. peek and set are exactly (!) and (:=). Their
return type is not “in the monad”. Indeed, their intended
use is to update the input of the graph from the outside.
The added value comes from the get operation that lifts a
variable to a changing value.

Finally, observing the result of an ’a Lwd.t computa-
tion is done using explicit roots:

type ’a Lwd.root
val observe : ?on_invalidate:(’a -> unit) ->

’a Lwd.t -> ’a Lwd.root
val sample : ’a Lwd.root -> ’a
val release : ’a Lwd.root -> unit

2

https://github.com/janestreet/incremental


A root is created by observing a changing value with
the observe function. It is important to call the release
function when a root is no longer useful to prevent mem-
ory leaks.

sample evaluates the graph using as input the values
of variables at the time of a call. Evaluation is lazy in
the sense that computation does not happen when the
graph is constructed but whensample is called. After sam-
pling, if a variable changes, all derived values, from in-
termediate results up to the root are thrown away. The
on_invalidate function, if it is was provided, is called
with the previous value of the root. Derived values that
depend on other variables are kept. A later call to sample
will recompute just what is needed.

The strategy can be summarized as: eager invalidation,
lazy evaluation.

3 Sample code

Just to get a feeling of what UI code can look like, here is
a little snippet that displays a custom type of possibly infi-
nite trees:

type tree = Tree of string * (unit -> tree list)

let rec tree_ui (Tree (lbl, child)) : ui Lwd.t =
let opened = Lwd.var false in
let render is_opened =
let btn_text =
if is_opened then "[-] " else "[+] " in

let btn_action () =
Lwd.set opened (not is_opened) in

let btn = Widget.button
(btn_text ^ lbl) btn_action in

let layout node forest =
Ui.join_y node

(Ui.join_x (Ui.space 2 0) forest) in
if is_opened
then Lwd.map (layout btn) (forest_ui(child()))
else Lwd.pure btn

in
Lwd.join (Lwd.map render (Lwd.get opened))

and forest_ui nodes = Lwd_utils.pack Ui.pack_y
(List.map ui_tree nodes)

Each node is printed on a separate line, indented and
then prefixed with [+] or [-] to show or hide sub-trees.
Most of the code is made of pure combinators, but each
node allocates an opened variable. All dynamism comes
from it: clicking the label changes its status, which is used
to display children selectively.

4 Extra features

The library comes with usual widgets (though the API is
still in development). But we have also developed a few
less common features that proved convenient.

4.1 Dynamic collections

User interfaces often deal with a dynamic data source,
with the number of items to be displayed not known in
advance. For instance the content of a list box, a tree or
a grid.

Fixed parts of a user interface can have their content
updated without changing the shape of the computation.
The Lwd graph stays the same. For dynamic parts, the
graph has to be adjusted. Sub-graphs are regularly created
or dropped.

Lwd offers two facilities for dealing with dynamic collec-
tions: Lwd_table for imperative collections and Lwd_seq
for pure collections.

Both collections are built on the idea of transforming
user-defined data using “map/reduce” functions. Given a
collection whose elements have type elt:

• map applies a function of type elt -> result to
each element

• reduce combines intermediate results by repeated
applying a function of type result -> result ->
result

For instance to display a collection of strings:

• map with Widget.string : string -> ui to
transform strings to visual elements

• reduce with Ui.join_y : ui -> ui -> ui to
concatenate visual elements vertically, producing a
vertical list of strings.

Lwd_table represents a collection as a doubly-linked list.
Each element is a node in this list. They are easy to move
around, to remove and to insert at arbitrary places. The
map function is applied once per element. The reduce
function is applied whenever the list changes. Internally,
a balanced structure is maintained to bound the depth of
reductions to the logarithm of the number of nodes.
Lwd_seq is a bit more subtle. Its interface looks like:

type +’a seq
val empty : ’a seq
val element : ’a -> ’a seq
val concat : ’a seq -> ’a seq -> ’a seq

empty is the empty collection, element is a singleton
collection and concat concatenate the elements from two
collections, in order. The physical identity of a seq value is
used to determine which map/reduce needs to be recom-
puted:

• new elements are mapped, new concats are reduced

• if element and concat nodes are reused, the results
of map/reduce are reused too.

The incrementality comes from building new seq by shar-
ing old and new values. The update algorithm takes a time
proportional to the number of changes: the bookkeeping
overhead does not affect the asymptotic complexity of the
whole computation.

3



4.2 Lwt integration

Lwt is a popular OCaml library that implements monadic
concurrency. It is very convenient for expressing asyn-
chronous computations.

While Nottui and Lwd libraries are independent of Lwt
they can work well together. Nottui_lwt is a thin layer
that runs the main user interface loop as an Lwt.t com-
putation.

An application in this style is structured as follow:

• Lwd evaluation and rendering is done synchronously
(from the point of view of Lwt).

• Event dispatch is synchronous too but can spawn
asynchronous computations.

• Asynchronous computations can change Lwd vari-
ables. Lwd graph invalidation schedules a new asyn-
chronous computation to render a new frame.

4.3 Live pretty printing

Nottui_pretty is an adaptation of the Pottier & Pouillard
/ Leijen / Wadler [1998]lineage of pretty printers.

The core combinators are the same but the atomic
primitives are Nottui elements rather than character
strings. The pretty-printing algorithm has been made in-
cremental to better suit interactive use.

Pretty-printed documents can include arbitrary wid-
gets, even those that dynamically change their size, with-
out significant loss of efficiency.

5 Applications

While Nottui and Lwd are still in their infancies, their de-
velopment was started and shaped by the needs of Citty, a
terminal client for a continuous integration system. Later
it proved useful for other applications.

5.1 Citty: a client for OCamllabs continuous
integration platform

Citty connects to instances of OCurrent, a continuous in-
tegration platform for OCaml projects in development by
OCamllabs.

It is structured as a multi-pane interface:

• The left-most one list known repositories.

• When a repository is selected, the list of monitored
references (in general git branches) opens in a new
pane. This is shown in figure 1.

• When a reference is selected, the list of continous in-
tegration jobs (linting, build status on different plat-
forms and OCaml versions, ...) associated to it opens
in a new pane.

Figure 1: Citty listing repositories and references of
“mirage/capnp-rpc”.

• When a job is selected, the output log is displayed. If
the job is still running, it can be cancelled. If the job
has finished, it can be rebuilt (figure 2).

• Output log is displayed in an Nottui widget for dis-
playing long word-wrapped text, but an extra action
allows opening the log in system $EDITOR, for conve-
nience.

Many Nottui/Lwd features are exercised in the application
logic:

• Each pane is a collection (of repository, of references,
of jobs and of log lines).

• All content is fetched from the network. Lwt is used to
keep the interface responsive will waiting for answers.

• Logs are often too big to be fetched in a single request.
Instead they are streamed. This is almost transparent
to the application, display is done progressively with-
out extra effort.

The interface can be navigated using keyboard and mouse,
and large contents can be scrolled.

5.2 Imandra: visualizing internal proof state

Imandra is an interactive theorem prover that focuses on
ease of use and powerful automation. Simon Cruanes
started using Nottui internally to develop an experimen-
tal proof exploration UI, shown in figure 3 , and a tool to
explore the content of a production database. Both use
the current set of widgets extensively with unfoldable trees
and scrollable lists of entries.

The proof exploration UI can be started directly from
within an interactive Imandra session, taking over the

4

https://ocsigen.org/lwt
https://github.com/fpottier/pprint
https://hackage.haskell.org/package/wl-pprint
https://github.com/ocurrent/citty
https://github.com/ocurrent
https://imandra.ai


Figure 2: Successful results of “lint-doc” target on current HEAD.

terminal, and gracefully restoring it back when “quit” is
clicked. The session, which is a modified OCaml toplevel
with some autocompletion, can then be resumed nor-
mally.

5.3 BetterBoy: Gameboy Emulator tooling

BetterBoy is a Gameboy Emulator implemented in OCaml
by Enguerrand Decorne. The main renderer outputs to an
SDL (graphical) window, though it can optionally be dis-
played in the terminal.

However, some tooling was developed to debug the em-
ulator itself using Nottui for the interface. The main fea-
tures are selected via tabs that switch between:

• A debugger shell with a prompt to input commands
and a log of results mixing of textual and “graphical”
(as far as the terminal can be used for graphics) con-
tents (figure 4).

• A video ram viewer for Gameboy graphic chipset.

• An interactive disassembler for Gameboy CPU (fig-
ure 5).

6 Shortcomings and future work

While Lwd & Nottui have been very satisfying for the
small applications we are working on, we encountered and
worked around a few limitations.

Context. The main one is the general notion of “con-
text dependence”, a generalization of the “context prob-
ing” events. Example of widgets that depends heavily on
their context are world maps. like Google Maps or Open-
StreetMaps, or large spreadsheets.

Their content can be arbitrarily big and it is not feasi-
ble to make a concrete representation of it. To compute
the actual content to display, it is necessary to know how
much space is available for the widget. This goes in the
opposite direction of the normal Nottui workflow: build-
ing a tree from the leaves, accumulating constraints to
know how to properly display the resulting interface. Here
we start from the root, splitting space according to layout
rules, until we reach the Map widget. And only then can
the widget actually compute its content.

This is not a pressing issue, but this is certainly a prob-
lem to address if we want the toolkit to be general purpose.

Sharing. Another minor issue has been sharing. The UI
is built in a functional style with each part of the interface
being directly manipulated as a value. In some places, it
is tempting to reuse the same value, when possible. For
instance, some decorations are reused in many places.

Sharing pure values is not a problem, but occasionally
stateful components are shared too. The toolkit handles
this situation without problem, but the observed behav-
ior can be surprising. For instance, Nottui has a premade
menu widget that opens a sub-menu popup when clicked.
If the same instance is put in two different places of the
UI, clicking one of them activates both at the same time,
displaying two popups.

5

https://github.com/unsound-io/BetterBoy


Figure 3: The imandra proof exploration UI.

This is a minor issue, but it would be nice to clarify
the semantics of shared visual components and to provide
means to prevent accidental sharing.

Batteries included. We are aiming to release the first sta-
ble version of Nottui & Lwd before the end of this year.
For user convenience, we would like to have a well-defined
set of standard widgets (button, edit field, lists, check box,
menus, etc). This requires careful API design, to avoid re-
grettable decisions or breaking backward compatibility. In
turn, this needs lots of testing to make sure we properly
cover common cases.

This is the main blocking point for the first public re-
lease.

Web integration. We have tested Lwd in the Web
browser, using Js_of_ocaml. It is already in a good enough
shape to implement simple web applications. While there
is no need for a low-level Nottui-like library as we can tar-
get the DOM directly, a common set of widgets is even
more important.

Once the terminal version is released, we plan to pro-
vide an API as close as possible to Nottui’s principles that
targets web platforms. The goal is not to provide a drop-in
alternative backend but rather to make it easy to transfer
knowledge from one backend to the other.

Acknowledgements

Thanks to Simon Cruanes and Enguerrand Decorne for
being early adopters, helping with the design of the li-
braries, and for code contribution. Thanks also to François
Pottier, Arthur Wendling, and Gabriel Scherer for their
valuable feedback.

References

Umut A. Acar. Self-adjusting computation. Technical re-
port, In ACM SIGPLAN Workshop on ML, 2005.

Nelson H. F. Beebe. Using boxes and glue in tex and latex,
2009.

Ross Paterson Conor McBride. Applicative programming
with effects. Journal of Functional Programming, 18,
2007.

Philip Wadler. A prettier printer. In Journal of Func-
tional Programming, pages 223–244. Palgrave Macmil-
lan, 1998.

6

https://ocsigen.org/js_of_ocaml


Figure 4: Using BetterBoy shell to explore internal state

Figure 5: BetterBoy disassembler showing instructions around program counter.

7


	Nottui
	Layout
	Event dispatch
	Still declarative
	Dynamic documents?

	Lwd, lightweight documents
	Sample code
	Extra features
	Dynamic collections
	Lwt integration
	Live pretty printing

	Applications
	Citty: a client for OCamllabs continuous integration platform
	Imandra: visualizing internal proof state
	BetterBoy: Gameboy Emulator tooling

	Shortcomings and future work

