
CAMLROOT
A SAFER FFI FOR OCAML?

CAMLROOT

PLAN

▸ Context: OCaml & Qt

▸ The OCaml FFI

▸ 1st contribution: roots

▸ 2nd contribution: regions

▸ Conclusion

CONTEXT

OCAML & QT

OCAML & QT

Qt (Gui/Widgets)
‣ C++ framework (OOP)

‣ Dynamic graph of objects

‣ Complex lifetimes

‣ Higher-order control flow

‣ Concurrency

‣ Very large API surface 
(thousands of methods), 
multiple versions

OCaml
‣ Functional programming

language

‣ Automatic memory
management with a GC

OCAML & QT

Video Qt

OCAML & QT

CUITE ARCHITECTURE

High-level
description of
Qt API (DSL)

Qt
.ml

Cuite
.mlOCaml

FFI

Qt

CAML
root

Cuite
support

Cuite 
"compiler"

cuite
.cpp

Extern

Manual

Generated

OCAML & QT

CUITE ARCHITECTURE

High-level
description of
Qt API (DSL)

Qt
.ml

Cuite
.mlOCaml

FFI

Qt

Cuite
support

Cuite 
"compiler"

cuite
.cpp

Extern

Manual

Generated

CAML
root

CAMLROOT

THE OCAML FFI

▸ 👍 Efficient (Sundials/ML)

▸ 👍 Expressive ((de)constructing values, higher-order
control flow, exception management, ...)

▸ 👎 Low-level, hard to use properly

▸ 👎 Risky (heap corruption, "heisenbug")

THE OCAML FFI

VALUE REPRESENTATION

Two concepts:

▸ the words

▸ the blocks

VALUE REPRESENTATION

A WORD

An integer as wide as a pointer (32 or 64 bits depending on
the platform).

‣ if the least significant bit is 0, 
the word is interpreted as the address of a block

‣ if the least significant bit is 1, 
the remaining bits (31 or 63) are interpreted as a signed
integer (the word is then said to be "tagged integer")

typedef intptr_t value;

VALUE REPRESENTATION

A BLOCK

A block is a chunk of memory managed by the GC. Its size,
expressed as a number of words, is stored in a header that
precedes the block.  
The header also determines whether the block should be
scanned or not:

‣ if yes, the block is made of words (that are themselves
interpreted as immediate integers or as block addresses)

‣ if not, the content is opaque to the GC; it does not affect
the graph of OCaml heap

THE OCAML FFI

ALLOCATION, CONSTRUCTION & DE-CONSTRUCTION OF VALUES

For immediate values:

value Val_long(long int);  
long int Long_val(value);

value Val_bool(bool);  
bool Bool_val(value);

THE OCAML FFI

ALLOCATION, CONSTRUCTION & DE-CONSTRUCTION OF VALUES

For blocks:

value caml_alloc(mlsize_t, tag_t);

value Field(value, int); 
void Store_field(value, int, value);

THE OCAML FFI

GC INTEGRATION

Periodically, the GC has to:

‣ traverse the heap to determine the set of live values;  
the GC has to know the roots manipulated from C side

‣ copy and compact the blocks, and update the addresses;
the GC needs to be able to change the values of C roots

THE OCAML FFI

EXAMPLE

let mk_pair x y = (x, y)

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLparam2(x, y); 
 CAMLlocal1(result); 
 result = caml_alloc(2, 0); 
 Store_field(result, 0, x); 
 Store_field(result, 1, y); 
 CAMLreturn(result); 
}

THE OCAML FFI

EXAMPLE

let mk_pair x y = (x, y)

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLparam2(x, y); 
 CAMLlocal1(result); 
 result = caml_alloc(2, 0); 
 Store_field(result, 0, x); 
 Store_field(result, 1, y); 
 CAMLreturn(result); 
}

Add &x et &y to
the set of roots.

THE OCAML FFI

EXAMPLE

let mk_pair x y = (x, y)

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLparam2(x, y); 
 CAMLlocal1(result); 
 result = caml_alloc(2, 0); 
 Store_field(result, 0, x); 
 Store_field(result, 1, y); 
 CAMLreturn(result); 
}

Declare a variable result and
add &result to the set of roots.

THE OCAML FFI

EXAMPLE

let mk_pair x y = (x, y)

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLparam2(x, y); 
 CAMLlocal1(result); 
 result = caml_alloc(2, 0); 
 Store_field(result, 0, x); 
 Store_field(result, 1, y); 
 CAMLreturn(result); 
}

The allocation can trigger the GC. 
x and y could be updated.

THE OCAML FFI

EXAMPLE

let mk_pair x y = (x, y)

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLparam2(x, y); 
 CAMLlocal1(result); 
 result = caml_alloc(2, 0); 
 Store_field(result, 0, x); 
 Store_field(result, 1, y); 
 CAMLreturn(result); 
}

Remove &x, &y and &result from 
the set of roots. Return result.

THE OCAML FFI

BAD EXAMPLE (1/2)

let mk_quad x y z w = ((x, y), (z, w))

CAMLprim 
value c_mk_quad(value x, value y, 
 value z, value w) 
{  
 CAMLparam4(x, y, z, w); 
 CAMLlocal1(result); 
 result = c_mk_pair(c_mk_pair(x, y), 
 c_mk_pair(z, w)); 
 CAMLreturn(result); 
}

THE OCAML FFI

BAD EXAMPLE (1/2)

let mk_quad x y z w = ((x, y), (z, w))

CAMLprim 
value c_mk_quad(value x, value y, 
 value z, value w) 
{  
 CAMLparam4(x, y, z, w); 
 CAMLlocal1(result); 
 result = c_mk_pair(c_mk_pair(x, y),  
 c_mk_pair(z, w)); 
 CAMLreturn(result); 
}

‣ The result of the first call is not
stored in a root.

‣ If the second call trigger a GC, the
heap will get corrupted.

THE OCAML FFI

BAD EXAMPLE (2/2)

let mk_triplet x y z = (x, (y, z))

CAMLprim 
value c_mk_triplet(value x, value y, value z) 
{  
 CAMLparam3(x, y, z); 
 CAMLlocal1(result); 
 result = c_mk_pair(x, c_mk_pair(y, z)); 
 CAMLreturn(result); 
}

THE OCAML FFI

BAD EXAMPLE (2/2)

let mk_triplet x y z = (x, (y, z))

CAMLprim 
value c_mk_triplet(value x, value y, value z) 
{  
 CAMLparam3(x, y, z); 
 CAMLlocal1(result); 
 result = c_mk_pair(x, c_mk_pair(y, z));  
 CAMLreturn(result); 
} • x is read

• c_mk_pair can trigger the GC, 
which might update x.

This is an undefined behavior.

THE OCAML FFI

OUR GOALS

‣ Detect unregistered roots

‣ Prevent undefined behaviours due to GC interaction

‣ Simplify management of roots

CAMLROOT

1ST CONTRIBUTION: A ROOT-CENTRIC API

OCaml "value"s do not behave like real values from the C
point of view:

‣ their address is captured by the GC,

▸ their value can change between each call, if the GC got
triggered.

Passing an argument ("x") is not simply copying a value but
results in a memory load that sample the actual value at the
time of the call.

A ROOT-CENTRIC API

PASSING ROOTS AS ARGUMENT (1/2)

The problem comes from the implicit dereferencing that
happens when passing an argument.

‣ In Rust, Caml-oxide shows that its type system is fine
enough to capture this subtlety.

‣ In C, CAMLroot replaces arguments of type "value" by
arguments of type "value*" (that represent roots).

A ROOT-CENTRIC API

PASSING ROOTS AS ARGUMENT (2/2)

Return values are replaced by an extra argument; another root
in which the result will be stored.

void mlroot_alloc(value *, mlsize_t, tag_t); 
void mlroot_set_field(value *, int, value *);

‣ return type is void: it is unlikely that the developer will
continue to nest calls.

‣ arguments are now pointers, there is no risk of mixing both
styles: 
mlroot_set_field(result, 0, &caml_alloc(2, 0));

A ROOT-CENTRIC API

ADMINISTRATIVE NORMAL FORM (ANF)
void mlroot_mk_pair(value *out, 
 value *x, value *y); 
 
CAMLprim 
value c_mk_triplet(value x, value y, value z) 
{  
 CAMLparam3(x, y, z); 
 CAMLlocal2(result, tmp); 
 mlroot_mk_pair(&tmp, &y, &z); 
 mlroot_mk_pair(&result, &x, &tmp); 
 CAMLreturn(result); 
}

A ROOT-CENTRIC API

DEFENSIVE PROGRAMMING

‣ The arguments are now pointers. 
The implicit dereferencing is now explicit but will happen
in the primitive functions of the FFI and not in user code.

‣ These pointers are roots, which should be registered to the
GC by the time they reached primitive functions.

‣ A optional "defensive" mode checks that a root has
actually been registered before each dereferencing.

CAMLROOT

WHAT DOES THIS INDIRECTION BUY US?
👍 No more undefined behavior:

‣ thanks to the ANF-style

‣ thanks to the use of adresses (which are stable) and not
values

👍 An opt-in defensive mode that detects wrong use as early
as possible.

👎 A slight increase in verbosity.

‣ A similar performance profile

CAMLROOT

2ND CONTRIBUTION: REGION-BASED ALLOCATION OF ROOTS

The root-centric API got rid of incorrect value manipulation.

We still have to take of roots. Can we simplify this too?

Idea: introducing "regions", an array of roots that permits
dynamic allocation of roots.

A REGION-BASED API

THE REGIONS

When switching from OCaml to C, a region is set up:

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLregion(&x, &y); 
 value *result = mlregion_alloc(2, 0); 
 mlroot_set_field(result, 0, &x); 
 mlroot_set_field(result, 1, &y); 
 CAMLregion_return(*result); 
}

A REGION-BASED API

THE REGIONS

When switching from OCaml to C, a region is set up:

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLregion(&x, &y); 
 value *result = mlregion_alloc(2, 0); 
 mlroot_set_field(result, 0, &x); 
 mlroot_set_field(result, 1, &y); 
 CAMLregion_return(*result); 
}

Region is initialised with
the addresses &x and &y

A REGION-BASED API

THE REGIONS

When switching from OCaml to C, a region is set up:

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLregion(&x, &y); 
 value *result = mlregion_alloc(2, 0); 
 mlroot_set_field(result, 0, &x); 
 mlroot_set_field(result, 1, &y); 
 CAMLregion_return(*result); 
}

A fresh root is returned

A REGION-BASED API

THE REGIONS

When switching from OCaml to C, a region is set up:

CAMLprim value c_mk_pair(value x, value y) 
{  
 CAMLregion(&x, &y); 
 value *result = mlregion_alloc(2, 0); 
 mlroot_set_field(result, 0, &x); 
 mlroot_set_field(result, 1, &y); 
 CAMLregion_return(*result); 
} When leaving the region,  

&x, &y and result are dropped.

A REGION-BASED API

THE REGIONS

When switching from OCaml to C, a region is set up.

‣ Populated with arguments

‣ Dynamically extended when allocating new local roots

‣ Released when returning to OCaml

A REGION-BASED API

THE REGIONS

The dynamic allocation provided by region let us recover and
safe and direct style:

value *mlregion_pair(value *x, value *y);

CAMLprim 
value c_mk_triplet(value x, value y, value z) 
{  
 CAMLregion(&x, &y, &z); 
 value *result = 
 mlregion_pair(&x, mlregion_pair(&y, &z)); 
 CAMLregion_return(*result); 
}

A REGION-BASED API

VARIATIONS (1/2) : SUB-REGIONS

All roots are released when leaving C code. 
If a function needs a lot of roots (for instance, because they
are allocated in a loop), this introduces a memory leak.

For this we provide sub-regions.

These enable a local management roots:

typedef region_t; 
void mlregion_subenter(region_t *region); 
void mlregion_subleave(region_t *region);

A REGION-BASED API

VARIATIONS (1/2) : REGIONS WITHOUT OCAML

OCaml only allow a single thread to access the runtime at any
given time. A lock is used to control the access to runtime state
from multiple threads.

A different kind of region lift the management of this lock to the
region API:

void mlregion_release_runtime_system(void);  
void mlregion_acquire_runtime_system(void);

This API is also defensive: inside such region, calls to FFI
primitives will fail (mlregion_alloc, mlregion_get_field, ...).

A REGION-BASED API

IN C++

‣ References (&) allow to hide the distinction between
values and pointers, reducing the syntactic noise

‣ "Resource Acquisition Is Initialization" idiom (RAII) allow to
tie region management to lexical scope. 
 
CAMLprim value cpp_external(value f) 
{  
 CAMLregion r(&f); 
 ... 
 return result; 
}

CAMLROOT

CONCLUSION

Two changes to simplify the OCaml FFI:

‣ a root-centric API that covers the same cases as normal
OCaml FFI while increasing safety

‣ a region system that can simplify code, especially in C++,
but that is not as expressive as normal FFI

‣ both are in development on https://github.com/let-def/
cuite and https://github.com/let-def/camlroot

https://github.com/let-def/cuite
https://github.com/let-def/cuite
https://github.com/let-def/camlroot

CAMLROOT

RELATED WORK

‣ O'Saffire 
A verifier for manual bindings. Not maintained anymore.

‣ Ctypes 
An EDSL for generating bindings.

‣ Caml-oxide  
A proof-of-concept FFI in Rust that uses the type system to
enforce GC invariants. 

CAMLROOT

BENCHMARK

┌───────────────────┬──────────┬─────────┬────────────┐ 
│ Name │ Time/Run │ mWd/Run │ Percentage │ 
├───────────────────┼──────────┼─────────┼────────────┤ 
│ mk_pair_caml │ 12.62ns │ 3.00w │ 57.74% │ 
│ mk_pair_caml_slow │ 15.88ns │ 3.00w │ 72.66% │ 
│ mk_pair_root │ 21.86ns │ 3.00w │ 100.00% │ 
│ mk_pair_root_safe │ 25.84ns │ 3.00w │ 118.20% │ 
└───────────────────┴──────────┴─────────┴────────────┘ 
 
mk_pair_caml: FFI OCaml (macros) 
mk_pair_caml_slow: FFI OCaml (functions) 
mk_pair_root: FFI CAMLroot (checks disabled) 
mk_pair_root_safe: FFI CAMLroot (checks enabled)

CAMLROOT

REFERENCES

‣ Sundials/ML 
T. Bourke, J. Inoue, M. Pouzet 
https://hal.inria.fr/hal-01408230

‣ Ctypes 
J. Yallop, A. Madhavapeddy, D. Sheets  
https://github.com/ocamllabs/ocaml-ctypes

‣ Caml-oxide  
S. Dolan 
https://github.com/stedolan/caml-oxide

https://hal.inria.fr/hal-01408230
https://github.com/ocamllabs/ocaml-ctypes
https://github.com/stedolan/caml-oxide

