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Abstract

LR parsers are highly suitable for the syntactic analysis of programming languages as
they guarantee linear-time recognition and can ensure the absence of grammatical
ambiguity. When processing an incorrect input, an LR parser recognises the correct
prefix (common with some valid sentences) but does not inherently provide addi-
tional context. While this allows an LR parser to pinpoint the position of a syntax
error, it does little to explain the issue to users. Consequently, LR parsers have de-
veloped a reputation for producing brief and unhelpful error reports, and an altern-
ative approach is often preferred when more informative feedback is necessary.

This thesis challenges that perception. In an LR parser, the grammar, through the
automaton, is available as an object which can be manipulated, for example, to study
incorrect sentences and refine the parser’s behaviour in case of errors. We propose a
declarative language for expressing error specifications that complement grammars.
We develop tools to recognise these specifications and facilitate their design. Finally,
we validate this approach by reproducing or improving syntax error messages for
three programming languages: OCaml, Catala, and Elm.

Keywords Compilation, Parsing, LR parser, Finite automaton, Regular language,
Syntax error, Error diagnosis, Reachability

Résumé

Les analyseurs LR sont une technologie de choix pour l’analyse syntaxique des lan-
gages de programmation ; notamment, ils garantissent une reconnaissance en temps
linéaire et l’absence d’ambiguïté grammaticale. Lorsqu’ils traitent une phrase in-
correcte, ces analyseurs reconnaissent le préfixe correct (partagé avec des phrases
du langage) mais ne fournissent a priori pas d’autre information. Cela permet de
pointer la position d’une erreur syntaxique mais pas d’expliquer le problème à un
utilisateur. Les analyseurs LR ont donc acquis la réputation de produire des rapports
d’erreur sommaires ; quand cet aspect est important, une autre approche que LR
sera souvent préférée.

Cette thèse remet en question cette idée. Dans un analyseur LR, la grammaire,
via l’automate, est un objet qui peut être manipulé à part entière, par exemple pour
étudier les phrases incorrectes et raffiner le comportement de l’analyseur en cas
d’erreur. Pour réaliser cette vision, nous proposons un langage déclaratif de spécific-
ation des messages d’erreur, complémentaire à la grammaire. Nous développons des
outils pour reconnaître ces spécifications et faciliter leur conception, et nous testons
la validité de cette approche en reproduisant ou en améliorant les messages d’erreur
syntaxiques pour trois langages de programmation : OCaml, Catala et Elm.

Mots clés Compilation, Analyse syntaxique, Analyseur LR, Automate fini, Langage
rationnel, Message d’erreur, Diagnostique, Analyse d’accessibilité



Résumé substantiel

La thèse étant rédigée en anglais, ce résumé présente l’approche et les principaux
résultats en français. Il reprend les premiers paragraphes de l’introduction, puis se
concentre sur les idées les plus importantes et liste les contributions.

Les analyseurs LR (Grune et Jacobs, 2008 ; Knuth, 1965) sont une solution effi-
cace pour l’analyse syntaxique des langages de programmation. Le formalisme LR
permet de décider statiquement l’absence d’ambiguïté et garantit une analyse en
temps linéaire. Cela a conduit à la création de générateurs d’analyseurs performants
tels que Bison (Donnelly et Stallman, 2021), Menhir (Pottier et Régis-Gianas, 2021) et
LangCC (Zimmerman, 2022).

Même si LR ne peut gérer qu’un sous-ensemble des grammaires hors-contexte,
il est en pratique suffisamment expressif pour gérer la plupart des langages de pro-
grammation, comme le démontrent par exemple Morbig (Régis-Gianas et al., 2020)
ou DiffAST (Hashimoto, 2021). Si nécessaire, GLR (Grune et Jacobs, 2008 ; Lang, 1974 ;
Tomita, 1991) étend LR à toutes les grammaires hors-contexte mais ne garantit plus
ni l’absence d’ambiguïté ni la reconnaissance en temps linéaire.

Cependant, une limitation majeure des analyseurs LR a été la prise en charge des
entrées syntaxiquement incorrectes. LR garantit la propriété de préfixe viable : une
erreur est détectée le plus tôt possible. L’entrée est décomposée en un préfixe valide
qui peut être complété pour obtenir une phrase correcte et un premier jeton inva-
lide. Par exemple, un analyseur LR pour une grammaire d’expressions arithmétiques
décomposerait l’entrée erronée « 1+ (∗2 » en « 1+ ( » et « ∗ ». Le préfixe peut être
complété par exemple en « 1+ (2) », qui est valide, alors qu’il n’existe aucun moyen
de compléter « 1+ (∗ ». Cela suffit à signaler l’emplacement de l’erreur à l’utilisateur
mais ne permet pas d’expliquer la cause de cette erreur. Les générateurs d’analyseurs
courants n’offrent donc qu’une prise en charge limitée du traitement des erreurs, et
les analyseurs LR ont tendance à produire des rapports d’erreur médiocres.

On propose de résoudre ce problème en inspectant l’état d’un analyseur sur le
point d’échouer et en utilisant ces informations pour créer un message d’erreur. Ce
travail s’appuie sur les idées introduites par Merr (Jeffery, 2002) et l’infrastructure
des messages d’erreur de Menhir (Pottier, 2016). Reprenons l’exemple précédent :
avant de rejeter l’entrée, l’analyseur a déjà donné une interprétation partielle à « 1+( »
dans la pile de son automate. Il est possible de produire un message d’erreur à par-
tir de cette pile (incluant l’état actuel de l’automate) et du jeton rejeté, une paire
que l’on appelle une configuration d’échec. LRGrep est un langage dédié (un « DSL »)
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qui permet à un programmeur de classer ces configurations et de déclencher des
actions spécifiques lorsque certaines configurations sont identifiées dans le but de
construire une explication pertinente de l’erreur.

Ma thèse est que les analyseurs LR se prêtent particulièrement bien à la produc-
tion de bons messages d’erreur. Pendant la conception, l’automate LR permet de rai-
sonner statiquement sur la grammaire et peut être utilisé pour guider l’auteur des
messages d’erreur. Pendant l’exécution, la configuration de l’automate offre une re-
présentation concrète et succincte de la situation grammaticale d’un texte en cours
d’analyse, que l’on peut exploiter pour produire une explication en cas d’erreur. Cette
perspective remet donc en cause l’idée reçue selon laquelle les analyseurs LR ne sont
pas adaptés à une gestion fine des rapports d’erreurs. Au contraire, les grammaires
LR offrent une expressivité suffisante pour reconnaître des langages de programma-
tion pratiques et conservent de nombreuses propriétés décidables. Cela permet de
spécifier déclarativement des analyseurs efficaces et facilite l’étude systématique de
la structure des grammaires LR, par exemple pour raisonner sur les erreurs de syn-
taxe.

Classifier des situations grammaticales

Le premier outil que l’on introduit pour identifier une situation grammaticale sont
les motifs reduce-filter, notés [α/A → β ·γ]. Ici α représente une construction gram-
maticale qu’il doit être possible de réduire dans le contexte courant ; c’est-à-dire
qu’un suffixe du texte qui vient d’être analysé doit être une instance grammatica-
lement correcte de la construction α. Le second composant A → β ·γ identifie une
position spécifique dans une règle grammaticale, ce que l’on appelle aussi un « item
LR(0) ». Il vient filtrer les situations restantes à celles dans lesquelles cette règle gram-
maticale a été partiellement reconnue jusqu’à la position indiquée. Ainsi, le préfixe
d’un texte satisfera un motif reduce-filter si, après analyse de ce préfixe, α est réduc-
tible et si, après réduction, le préfixe β de la règle A → β ·γ vient d’être reconnu. α
peut être laissé vide si l’on souhaite identifier une règle sans réduire.

Illustrons ces concepts sur une grammaire des expressions arithmétiques réduite
aux règles suivantes :

• E → T

• E → T +E

• T → n

• T → (E)

Une expression E est soit un terme, noté T , soit un terme plus une autre expres-
sion. Un terme est soit un entier n soit une expression entre parenthèses. Cette gram-
maire minimaliste traite donc seulement des séquences d’additions, éventuellement
parenthésées. Voici quelques items de cette grammaire :
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• E → T +·E représente une situation où l’on vient juste de reconnaître le signe
+ d’une addition; elle devra être suivie d’une expression pour que la règle s’ap-
plique.

• Dans T →·n, on attend un entier, dans le but de reconnaître un terme.

• Enfin, T → (E ·) attend une parenthèse fermante pour terminer la reconnais-
sance d’une expression parenthésée.

Pour spécifier les erreurs de la grammaire, on peut par exemple associer le mo-
tif [/T → ·n] au message « Ce terme est incomplet ; un entier est attendu » ou bien
[E/T → (E ·)] au message « Une parenthèse fermante est manquante après cette ex-
pression ».

Dans le second motif, on a demandé explicitement la réduction de E . Pour com-
prendre pourquoi, considérons la phrase incomplète « (1+2 », pour laquelle on sou-
haiterait rapporter qu’une parenthèse fermante manque. L’interprétation partielle
donnée à cette phrase est la pile « (T + n » : 1 a été reconnu comme un terme à
part entière mais l’interprétation des autres symboles n’a pas encore été fixée. Si l’on
considère la pile telle quelle, le filtre /T → (E ·) échoue. Mais en demandant la réduc-
tion de E , on force à interpréter « 1+2 » comme une expression, pour obtenir la pile
« (E » qui permet au filtre de réussir.

Cette mécanique de réduction fait appel au fonctionnement interne des analy-
seurs LR et il n’est en fait pas nécessaire de l’exposer aux utilisateurs. Dans /T → (E ·),
on peut voir qu’il sera nécessaire de réduire une expression car E est immédiatement
à gauche du point. Notre outil peut donc inférer cette information; cependant, la no-
tation explicite que nous avons choisie décompose clairement les deux étapes de la
reconnaissance d’un motif : réduire pour s’abstraire du contexte immédiat, puis filtre
par item pour identifier des situations précises.

Appliqués à un analyseur LR, les motifs s’interprètent comme des ensembles ré-
guliers de piles : un motif reconnaît une certaine configuration si la pile appartient
à l’interprétation du motif. Pour augmenter le pouvoir de classification des motifs
reduce-filter, on peut les généraliser en un dialecte des expressions rationnelles dont
les atomes sont des symboles grammaticaux. En plus des opérateurs usuels, disjonc-
tion, concaténation et étoile de Kleene, on ajoute deux opérateurs notés [e] pour
reduce, qui reconnaît les piles dont un suffixe peut se réduire vers une séquence re-
connue par e, et /A →α ·β qui filtre les piles dans lesquelles l’item A →α ·β est actif.
Les motifs reduce-filter sont donc un cas particulier des expressions de ce dialecte.
On ajoute également un opérateur v = e pour lier des variables, afin de référencer des
constructions grammaticales déjà reconnues. Dans l’exemple de la parenthèse man-
quante, cela permet par exemple de rappeler la position de la parenthèse ouvrante
dans l’explication de l’erreur.

Finalement, une spécification d’erreur est composée d’une séquence de motifs et
d’actions. En cas d’ambiguité, c’est-à-dire quand une pile est reconnue par plusieurs
motifs, la priorité est donnée au premier motif dans l’ordre de la séquence. L’action
associée au premier motif reconnu est donc utilisée pour décrire une pile. Cette ap-
proche est inspirée des analyseurs lexicaux (Paxson et al., 2007 ; Trofimovich, 2019),
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dont LRGrep est conceptuellement très proche, à ceci près que le texte est remplacé
par la pile d’un analyseur LR.

Contributions

Mes premières contributions concernent la classification des configurations d’un
analyseur LR :

• La notion de motif reduce-filter pour classifier des situations grammaticales.

• Un algorithme s’appuyant sur les automates finis pour reconnaître efficace-
ment ces motifs.

• Un dialecte d’expression rationnelle pour décrire des « spécifications d’erreurs »,
en généralisant ces motifs pour reconnaître et expliquer les configurations d’un
analyseur LR.

• Un schéma de compilation efficace pour ce dialecte.

Je me suis ensuite intéressé à l’analyse statique des échecs d’un automate LR.
Cette tâche est rendue significativement plus complexe par la notion de résolution
de conflits. Proposée par l’analyseur Yacc, et toujours utilisée de nos jours, elle per-
met de combler certaines limites de l’analyse LR mais introduit des irrégularités qui
font grossir l’espace des configurations possibles. Mes contributions sur cet aspect
sont :

• Un algorithme qui permet de factoriser cet espace, accélérant de plusieurs
ordres de grandeur l’analyse d’accessibilité introduite dans Pottier (2016).

• Un automate permettant d’énumérer les configurations d’échecs.

• Pour la conception des spécifications d’erreurs :

– Une analyse permettant pour chaque motif reduce-filter de lister les confi-
gurations d’échecs qu’ils peuvent reconnaître, en illustrant chaque confi-
guration par une phrase incorrecte échouant dans cette configuration.

– Une analyse de couverture pour lister les configurations qui n’ont pas de
message d’erreurs, ou bien pour garantir que toute configuration d’échec
est expliquée par au moins un message.

Autrement dit, ces outils aident l’auteur d’une grammaire à gérer les erreurs en
donnant des exemples de phrases incorrectes à gérer, en indiquant quels motifs pour-
raient gérer ces phrases et en vérifiant qu’il n’a pas oublié de cas.

Enfin, la dernière contribution est pratique : tout le travail décrit jusqu’ici a été
implanté dans l’outil LRGrep qui permet de complémenter une grammaire Men-
hir avec une spécification d’erreur et peut assister l’auteur de la grammaire dans la
conception de cette spécification. Pour valider et raffiner cette méthode, je l’ai ap-
pliquée à trois langages de programmation : OCaml (Leroy et al., 2019), Catala (Me-
rigoux et al., 2021) et Elm (Czaplicki et Chong, 2013).
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Chaque langage a demandé une approche différente :
• Peu d’attention a été donnée aux messages d’erreur de syntaxe de l’implan-

tation de référence d’OCaml. L’objectif était d’améliorer cet état de fait. De
plus, la grammaire d’OCaml utilise peu de délimiteurs : cela permet des no-
tations très denses mais peut occasionner des erreurs subtiles, difficiles à ex-
pliquer. Les fonctionnalités avancées de LRGrep ont été conçues pour prendre
en charge ces situations.

• Catala utilise l’infrastructure de messages d’erreur de Menhir. Mon travail ici a
consisté à vérifier que LRGrep permettait de reproduire fidèlement son com-
portement, voire de l’améliorer (avec une spécification plus succincte et li-
sible).

• Enfin, Elm s’appuie sur un analyseur syntaxique écrit à la main, utilisant des
combinateurs spécialement conçus pour permettre la gestion fine des erreurs
de syntaxe. Elm est reconnu parmi ses utilisateurs pour le soin porté aux mes-
sages d’erreur. Il a fallu écrire une grammaire LR pour un sous-ensemble réa-
liste de Elm et une spécification d’erreurs reproduisant les explications du com-
pilateur de référence.

Dans le cas de Elm, l’écriture de la spécification a été en grande partie automa-
tisée en utilisant la grammaire LR comme guide pour la génération de phrases in-
correctes et en utilisant le compilateur Elm de référence pour les expliquer. Cela a
démontré que les motifs reduce-filter sont des bons classificateurs d’erreur et qu’une
spécification déclarative pouvait reproduire finement le comportement d’un analy-
seur écrit à la main avec des messages d’erreur à l’état de l’art.
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Introduction

LR parsing (Grune and Jacobs, 2008; Knuth, 1965) is an efficient technology for im-
plementing programming language parsers. The LR formalism enables static test-
ing of non-ambiguity and guarantees linear-time analysis. This led to the creation of
parser generators producing high-performance parsers, such as Bison (Donnelly and
Stallman, 2021), Menhir (Pottier and Régis-Gianas, 2021), and LangCC (Zimmerman,
2022).

A significant challenge of LR parsers has been the generally poor support for deal-
ing with invalid inputs. The LR formalism guarantees the viable-prefix property: an
error is detected as early as possible. The input is decomposed into a valid prefix
that can be completed to get a correct sentence and the first invalid token. For ex-
ample, an LR parser for a simple grammar of arithmetic expressions would break the
erroneous input “1+(*2” into “1+(” and “*”. The former can be completed to, e.g.,
“1+(2)” while there is no way to complete “1+(*”. This is sufficient to report the
location of the error to the user but not to explain the cause of this error. Most main-
stream LR parser generators provide limited support for dealing with errors, and as a
result, typical implementations of LR parsers tend to produce poor error reports.

Our research attempts to address this problem by providing a framework for ana-
lysing the state of a failing parser and using this information to craft an error mes-
sage. We build upon the work of Merr (Jeffery, 2002) and the error-message infra-
structure of Menhir (Pottier, 2016). Continuing with our example, before rejecting
the input, the parser has already given a partial interpretation to “1+(” in the form
of the parsing stack. We propose to generate an error message from these pieces of
information, the stack (including the current state) and the rejected token, which we
call a failing configuration. We design a domain-specific language (DSL) that allows
the programmer to classify these configurations and take action when specific ones
are identified.

In short, our thesis is that LR parsers offer a unique opportunity to improve er-
ror message quality by exploiting their ability to track grammatical state and context.
In the continuation of Pottier (2016), this perspective further challenges the common
belief that LR parsers are unsuitable for high-quality error handling. LR grammars
occupy a distinctive niche: they possess sufficient expressiveness to accommodate
practical programming languages while retaining numerous decidable properties.
This duality enables the development of efficient parsing algorithms and facilitates
the analysis of the structure of LR grammars. As we demonstrate, it becomes feasible
to reason about syntax errors in a manner independent of a specific implementation.

13
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E → T
E → T + E
T → F
T → F * T
F → i
F → ( E )

Figure 1: Rules for a simplified arithmetic language

A minimalist example Consider the grammar for a subset of arithmetic expres-
sions with the rules given in Figure 1. The terminals are +, *, (, ) and i , representing
an integer literal. The nonterminals are E , T and F (for expression, term, and factor).
The starting symbol is E . The nonterminals represent the different priority levels of
an arithmetic expression, interpreting + and ∗ as right-associative.

We provide the grammar with an error specification such as:

/F → · i { "Expecting an integer" }
[E /F → (E ·) ] { "Expecting a closing parenthesis" }

This specification is composed of two clauses, made up of a pattern and a semantic
action, and gives an interpretation to some parsing failures. If the LR parser rejects
an input, the patterns are compared against the parser’s stack to determine if a clause
applies. If several clauses apply, the first one, in the order of the text, is retained, and
its semantic action is evaluated. The pattern language is a dialect of regular expres-
sions extended with two operators, filter and reduce. To understand these examples,
let us put aside the regular expression part and focus on the new operators.

The first clause handles failures in a situation where it would have been possible
to read an integer. /A →α ·β is the filter operator and is parameterised by an LR(0)
item. An LR(0) item represents a particular position within a grammatical rule by us-
ing a dot to separate what has already been recognised from a potential continuation.
The operator recognises the stacks where the item appears at the top. Thus /F → · i
succeeds when the parser is about to recognise an i as part of the rule F → i . The
filter operator is used to categorise situations according to their direct context.

The second clause uses a similar logic to filter situations in which a closing par-
enthesis is expected, but only after reducing the top of the stack to E . If a canonical
LR parser for our arithmetic expressions tries to recognise “(1+2”, it will fail with a
stack containing “(T+i”. The number 1 is reduced to a T , as part of the E → T+E rule,
but 2 is still represented by an i . The parser needs to know what comes next before
reducing it: if it is followed by ∗, it will be reduced to an F ; if it is a +, it will be further
reduced to a T . More generally, when an LR parser encounters an error, the details
necessary for explaining the situation may be buried deep within the stack. Directly
matching the stack can be impractical, but reducing a few selected rules often proves
sufficient to surface the information needed for producing an appropriate error mes-
sage. The second operator of our pattern language is [ p ], or “p modulo reduction”.
It matches if there is a sequence of reductions applicable on the current stack that
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produces a suffix matching p. Back to our example, the sub-pattern E /F → (E · )
matches a suffix made up of an expression E that satisfies the filter operator. The
complete pattern [E /F → (E ·) ] can be read as “match stacks which suffix can be
reduced to an expression appearing between parentheses”1.

These two patterns belong to a subset of our DSL which we call the reduce-filter
patterns. They have the form [α/A1 →β1 ·γ1 . . . /Ai →βi ·γi ] and they recognise
situations in which a suffix of the stack can be reduced to the sentential form α, lead-
ing to a new stack in which the items A1 →β1 ·γ1 to Ai →βi ·γi appear. When no
reductions are needed, as in the first example, one can set α to ϵ, and even omit the
brackets and directly write /A1 →β1 ·γ1 . . . /Ai →βi ·γi . This subset plays a central
role in the DSL and is the main topic of Chapter 2.

Let us go back to the sample error messages. In our example they are simple
strings but in a more realistic setting, they will be actual code that refers to semantic
values or to source code locations. For instance, the second clause could point out
the location of the unclosed left parenthesis in the error message. As for the word-
ing of the messages, one could object that they are only half-truths: the explanations
are valid but focus on a single possible continuation. When an integer is expected, it
is also valid to input a parenthesised expression. We focused on this case as we felt
that this was the most common way to phrase error messages: suggesting the most
likely explanation, according to the author of the error messages, and not flooding
the user with an exhaustive report. The formalism extends naturally to offering mul-
tiple explanations—by collecting all matching messages instead of stopping at the
first one.

However, some situations can deserve more specific error messages. Hence our
choice of using the text order for ranking clauses: when multiple clauses apply, the
first one is chosen. Error specification for realistic grammars tend to start by catching
highly specific errors using rich patterns, and progressively fall back to generic ones;
possibly ending at the uninformative “Syntax error” in the worst case.

Here is an excerpt of the error specification for the OCaml language from our
reference implementation:

| item=structure_item; [let_bindings(ext)] @ IN
{
"A 'let ... in' expression is not allowed immediately after a definition.
This can be solved by inserting ';;' or 'let () = ' after " ^
print $endloc(item)

}

This clause catches an incorrect use of let-bindings. The let keyword introduces
two different constructions in the OCaml language:

• let pattern = expression for a module-level definition,

1The pattern can appear redundant because the prefix E is specified twice; first as part of the suffix
to reduce to, then for the filter. We choose to stick with this notation to simplify the interpretation:
both parts can be given an independent interpretation that compose as expected. Our implementa-
tion offers syntactic sugars to hide those redundancies when desired.
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• let pattern = expression in expression for a local definition.

Things get confusing because a local definition is allowed in a module, but only if it
comes first, or if it is separated from the previous definition by ;;. Otherwise, the
parser fails when reaching the in keyword. The pattern detects this situation by:

1. looking for a structure_item, the nonterminal for module-level definitions,

2. followed by a construction that reduces to a let_bindings(ext), the nonter-
minal recognising let pattern = expression,

3. and fails when looking ahead at IN, the terminal for the in keyword.

The concepts used in this pattern are formally presented in Chapter 3, while Chapter 7
introduces the reference implementation and the concrete syntax.

To conclude, we would like to point out a symmetry in the three examples so
far: the pattern and the message mention the same elements, once using formal
constructions and once in text. The integer appears as i in F → · i , the parentheses
in F → (E ·), and the OCaml example clearly delimits the definition, the let binding
and the in. A good pattern naturally tends to mirror the explanations given for an
error.

Contributions This work introduces a domain-specific language (DSL) for identi-
fying and describing failing configurations of LR parsers. The DSL empowers de-
velopers to clearly articulate the expected behaviour in the face of invalid input using
a declarative specification.

A standalone program implements this DSL, compiling specifications into code
and integrating with Menhir, the leading LR parser generator for OCaml. To facilit-
ate the authoring of error messages, a suite of tools is provided. An instrumented
interpreter for LR parsers produces annotated backtraces to understand failing con-
figurations. A static analyser identifies uncovered cases (invalid sentences lacking
an error message) and can generate comprehensive test suites to rigorously test the
failure paths of LR parsers. To make this practical, we developed a new reachability
analysis for LR parsers that increases performance by two orders of magnitude over
the current state of the art.

This dissertation introduces the DSL, its implementation, the new approach to
reachability and the algorithmic challenges encountered, and presents empirical find-
ings obtained by applying this methodology to the parsers of three full-featured pro-
gramming languages.

Limitations This study explores how LR parsers handle invalid input with the goal
of enabling users of LR parser generators to produce effective error messages. Our re-
search is experimental, focusing on the development and evaluation of reduce-filter
patterns as a novel approach to improving error handling in compilers and related
tools.
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While we have successfully implemented this technique and demonstrated its
practical utility through case studies involving realistic grammars, our work has sev-
eral limitations. Notably, we do not provide formal proofs for our claims, which
should be considered conjectures rather than theorems. Furthermore, our invest-
igation is narrowly focused on extracting relevant information from LR parsers, not
looking at the broader question of what constitutes a good error message nor how it
should be communicated. This topic has been extensively studied in industry with
notable examples including the C/C++ frontend of Clang and GCC or the Elm com-
piler, and in academia, where decades of experience have been collected and sum-
marised in the major survey of Becker et al. (2019). For further insights, interested
readers may refer to Barik et al. (2018), which provides hints on the argumentative
structure of error messages, and Wrenn and Krishnamurthi (2017), for evaluating the
quality of error messages.

Our work complements these efforts by providing a technical and systematic
solution to syntax error handling for LR parsers. We validate the approach by show-
ing that (1) we can reproduce the high-quality error messages of handwritten pars-
ers (Elm), and (2) our technique extends to intricate errors that require relating in-
formation wide apart (with OCaml examples).

Organisation The rest of the document is structured as follows:

• Chapter 1 briefly introduces the main concepts used throughout the thesis,
namely context-free grammars, LR parsers and regular automata, and the ap-
proaches to error-handling pioneered by Merr and Menhir.

• Chapter 2 focuses on the reduce-filter patterns. We introduce and formalise
them on context-free grammars and we show how to recognise them efficiently
on LR automata.

• Chapter 3 generalises these patterns into a richer calculus with stronger classi-
fication power. We give a formal semantics for this calculus and define a deriv-
ative operator, showing that the calculus defines a class of regular languages.

• In Chapter 4, we compile this calculus to a variant of deterministic finite auto-
mata suitable for a performant implementation.

• Chapter 5 studies the reachability problem for LR parsers, introducing a novel
and efficient solution.

• Chapter 6 uses reachability to develop two static analyses: an enumerator of
failing configurations capable of (finitely) covering all reduce-filter patterns
and suitable for fuzzing existing parsers, and an exhaustiveness checker to find
failing configurations not covered by a specification.

• Chapter 7 reports our experience with the LRGrep tool, an implementation of
the calculus. It also covers the features and implementation details that do not
affect the theory but which we found important in practice.
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• Chapter 8 applies LRGrep to OCaml, Catala, and Elm programming languages.

Chapter 5 was published separately in Bour and Pottier (2021). The approach
described has been implemented and upstreamed into Menhir, improving over the
previous implementation by two orders of magnitude both in time and space. All
the other techniques we present have been implemented and tested in the LRGrep
tool2.

2https://github.com/let-def/lrgrep

https://github.com/let-def/lrgrep


Chapter 1

Background on grammatical analysis
and LR parsing

This chapter introduces the theoretical foundations on which LRGrep is built: in par-
ticular, regular and context-free languages, and the tools for recognising and manip-
ulating them—derivations, finite automata, Shift-Reduce parsers and LR automata.
When appropriate, the definitions are adapted to better fit the needs of LRGrep.

A second part of the chapter reviews the existing approaches for handling error
messages with an LR parser.

1.1 Notation for sequences

We write:

• ϵ for the empty sequence (or word),

• X ∗ for the set of sequences of elements of some set X ,

• |u| for the length of a sequence,

• ui , with 0 ≤ i < |u|, for the i -th element of the sequence, starting from 0,

• u ·v , or uv if it is not ambiguous, for the concatenation of u and v , e.g. (uv)i =
ui if i < |u|, vi−|u| otherwise,

• ||u|| for the set of elements of u, e.g., ||ϵ|| =; and ||x ·u|| = {x}∪||u||.

When no other notation has been established for a set X , we write~x for an arbit-
rary element of X ∗. We assume the following functions on sequences:

• head(u) is the leftmost element of u, e.g. head(abc) = a,

• tail(u) is the sequence u without its leftmost element, e.g. tail(abc) = bc,

• top(u) is the rightmost element of u, e.g. top(abc) = c,

• pop(u) is the sequence u without its rightmost element, e.g. pop(abc) = ab.

19
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1.2 Regular languages and finite automata

Given an alphabet Σ, a regular language is a subset of words W ⊂ Σ∗ that can be
recognised by a finite automaton. W is the language of the automaton.

1.2.1 Deterministic finite automaton

A deterministic finite automaton (DFA) is given by a tuple M = (Q,Σ,δ, q0,F ) where:

• Q is a finite set of states,

• Σ is the alphabet, a finite set of symbols,

• δ : Q ×Σ*Q is the partial transition function,

• q0 ∈Q is the initial state,

• F ⊂Q is the set of final or accepting states.

Finite automata are used to recognise sets of strings. To check if a string w is re-
cognised, one starts from the initial state q0 and follows the transitions labelled by
the letters of w , going through a sequence of states qi = δ(qi−1, wi ): q1 = δ(q0, w1),
q2 = δ(q1, w2), etc. The string is recognised if, when reaching the end of the word, the
state is final: q|w | ∈ F . This simple procedure is amenable to efficient implementa-
tions, making finite automata popular devices for recognising regular languages.

For convenience, we lift δ to operate on words: δ(q, a · w) = δ(δ(q, a), w) and
δ(q,ϵ) = q . A word w is recognised if and only if δ(q0, w) ∈ F . The language recog-
nised by the automaton is L (M) = {

w ∈Σ∗∣∣δ(q0, w) ∈ F
}
.

We allow δ to be a partial function—δ(q, a) can be undefined when no continu-
ation of the prefix would be recognised by the automaton. This is equivalent to hav-
ing a distinguished sink state q⊥ ∉ F looping on itself: ∀b ∈ Σ,δ(q⊥,b) = q⊥, and to
which we throw undefined transitions like δ(q, a) = q⊥. Operationally, an undefined
transition can be seen as an early-exit.

1.2.2 Non-deterministic finite automaton

Non-deterministic finite automata (NFA) generalise DFA by allowing transitions to
target multiple states. In this work, we use a flavour of ϵ-NFAs defined by tuples
M = (Q,Σ,δ, q0,F ) where:

• Q is the finite set of states,

• Σ is the alphabet, a finite set of symbols,

• δ : Q × (Σ∪ {ϵ}) →P (Q) is the transition function,

• q0 ∈Q is the initial state,



CHAPTER 1. BACKGROUND ON GRAMMATICAL ANALYSIS AND LR PARSING 21

• F ⊂Q is the set of final or accepting states.

Compared to the DFA introduced above, the transition function can target zero,
one, or more states, and there are transitions labelled ϵ which represent states reach-
able without consuming an input symbol.

An NFA also describes a set of strings although the operational interpretation is
more involved than in the DFA case since we have to keep track of a set of active
states rather than a single state. In return, they often allow for a more compact rep-
resentation of sets of strings—in the worst case, a DFA can be exponentially larger
than an equivalent NFA.

A string w is recognised by an NFA if and only if δ∗(I , w)∩F 6= ; where:

closure(Q ′) = Q ′∪ ⋃
q∈Q ′

closure(δ(q,ϵ))

δ∗(Q ′, a) = ⋃
q∈closure(Q ′)

δ(q, a)

δ∗(Q ′,ϵ) = closure(Q ′)
δ∗(Q ′, a ·w) = δ∗(δ∗(q, a), w)

In three steps:

1. closure is the ϵ-closure, completing a set of states with all the states reachable
by following ϵ-transitions,

2. δ∗ : P (Q)×Σ→P (Q) extends δ to operate on the closure of a set of states,

3. δ∗ : P (Q)×Σ∗ →P (Q) lifts the previous definition to operate on a word rather
than on a single symbol.

In this work, we use NFAs as intermediate tools for reasoning about properties of
sets of strings, eventually producing a DFA to recognise specific strings. The subset
construction (Rabin and Scott, 1959) is the standard algorithm for transforming an
NFA into a DFA.

1.2.3 Notations for automata, graphs and transitions

When it is not ambiguous, we identify an automaton and the set of its states. E.g., we
call Q the automaton (Q,Σ,δ, q0,F ). We use the notation q

s−→ q ′ for a transition from
q to q ′ labelled by s: δ(q, s) = q ′.

We extend this notation to graphs and edges, identifying a graph (V ,E) with the
set of its vertices V (we say “a path in V such that . . . ”) and write v −→ v ′ for an unla-

belled edge or v
l−→ v ′ for a labelled edge.

When multiple automata or graphs are being considered, we write their name as
a subscript of the arrow to avoid ambiguities. E.g., “if q

s−→Q q ′ and v
s−→V v ′, then . . . ”
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1.3 Regular expressions and their derivatives

Regular expressions e,e1,e2 ∈ E denote sets of strings over an alphabet Σ. They are
built using the following operators:

• ;, which denotes the empty set,

• ϵ, which denotes the empty string,

• a literal character a ∈Σ, which denotes the string made of this single character,

• the concatenation e1 · e2, which denotes strings that are a concatenation of a
string denoted by e1 with a string denoted by e2,

• the disjunction e1|e2, which denotes strings denoted by e1 or by e2,

• the Kleene star e∗, which denotes the repetition of zero, one or more instances
of strings denoted by e.

The denotation or language L (e) of an expression e is the set of strings that is the
least solution to these equations:

L (;) = ;
L (ϵ) = {ϵ}
L (a) = {a}

L (e1 ·e2) = {u · v | u ∈L (e1), v ∈L (e2)}
L (e1|e2) = L (e1)∪L (e2)

L (e∗) = L (ϵ|e ·e∗)

1.3.1 Connection to finite automata

To efficiently decide whether an input is recognised by a regular expression, it is com-
mon to translate the expression into a finite automaton. The standard approach
among lexer generators is to use a variant of Thompson (1968) or Glushkov (1961)
constructions to generate a non-deterministic automaton from a regular expression;
also treated in Berry and Sethi (1986). The automaton is then determinised and
sometimes minimised before further use. These techniques have continued to re-
ceive a lot of attention in modern lexer generators or regular expression recognisers,
such as the traditional flex (Paxson et al., 2007) and the modern alternatives RE2C (Tro-
fimovich, 2019), rust-regex1, or re22.

Our use case is very similar to that of a lexer generator where the text is replaced
by the stack of an LR parser (presented in 1.6). However, the standard techniques are
difficult to apply directly to LRGrep patterns, mainly because of the need to reason
on reductions.

1https://blog.burntsushi.net/regex-internals/
2https://github.com/google/re2

https://blog.burntsushi.net/regex-internals/
https://github.com/google/re2
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Instead, we opted for an approach based on regular expression derivation. De-
rivation gives a direct definition of the transition function, without explicitly con-
structing the automaton. From a regular expression e and a character a, the derived
expression d(e, a) recognises the suffixes of words in L (e) beginning with a; in other
words, what remains to match after seeing a. Matching a single word can be done by
deriving with respect to each character in sequence. An automaton can be construc-
ted by closing over the derivatives—deriving each expression with respect to each
character, until no new expressions are discovered. Each expression is a state of the
automaton, and the derivative is the transition function. This formalism is easy to
extend to other operators, as studied by Thiemann (2016). This ease of extension
was confirmed by our experience in adding two custom operators, reduce and filter.

Though less popular than Thompson-like approaches, derivation has been suc-
cessfully used for the translation of regular expressions into automata (Moseley et al.,
2023; Owens et al., 2009). Derivation also shines when formally reasoning about
properties of regular languages (Coquand and Siles, 2011; Midtgaard et al., 2016).

1.3.2 Regular expressions derivatives

The notion of derivation for languages and regular expressions was introduced by
Brzozowski (1964) and has been adapted to different contexts since. Our work builds
upon the variant introduced in Antimirov (1996). In this section, we recall their defin-
itions and point out the benefits of Antimirov’s variant in our setting.

Brzozowski’s derivative The Brzozowski derivative dB (S, a) of a set of strings S with
respect to a character a is the set {u|a ·u ∈ S}: the remainders of strings in S that begin
with a. For instance, dB ({apricot,banana,berry} ,b) = {anana,erry}.

Brzozowski generalised the derivative to regular expressions, such that the de-
rivative of the language is the language of the derivative: dB (L (e), a) = L (dB (e, a)).
Furthermore, Brzozowski proved that, if enough equivalent expressions are identi-
fied, the derivatives of a regular expression are finite.

This gives an incremental way of constructing a DFA recognising the language
of an expression e: the states are the regular expression e and its derivatives, the
transition function is dB .

e

dB (e,a)

dB (dB (e, a), a) . . .

dB (dB (e,a),b) . . .

. . .

dB (e,b) . . .

a

b

a

b

a

b

. . .

. . .

. . .

. . .
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The base definition of derivatives can be conveniently extended to new oper-
ations; for instance, the intersection and complementation of regular expressions
have a natural definition using derivatives.

On regular expressions, dB is the least function satisfying:

dB (;, a) = ;
dB (ϵ, a) = ;
dB (a, a) = ϵ

dB (b, a) = ;, if b 6= a

dB (e1.e2) =
{

dB (e1, a).e2 | dB (e2, a), if c(e1)

dB (e1, a).e2, otherwise
dB (e1|e2, a) = dB (e1, a) | dB (e2, a)

dB (e∗, a) = dB (ϵ|e.e∗, a)

c is an auxiliary definition to determine whether ϵ is in the denotation of a regular
expression. If it is the case, the expression is said to be nullable. It is defined as:

c(;) = ⊥
c(ϵ) = >
c(a) = ⊥

c(e1.e2) = c(e1)∧ c(e2)
c(e1|e2) = c(e1)∨ c(e2)

c(e∗) = >

A significant complication is the need to identify some semantically equivalent
regular expressions, which is mandatory for regular expressions to have finite deriv-
atives. For instance, the following identities of operators can be considered:

• associativity, commutativity and idempotence (ACI) of the disjunction,

• associativity of the concatenation,

• idempotence of Kleene-star, . . .

While the first identities are necessary for the derivatives to be finite, the stronger
the identification, the closer the DFA will be to a minimal one. Owens et al. (2009)
presents an elegant functional implementation enforcing many identifications using
smart constructors, though we could not get it to perform efficiently. The identities
considered do not appear to be sufficient to efficiently handle certain patterns3 and
that made it difficult to extend the derivative to custom operators.

Antimirov’s derivative Antimirov (1996) introduces the non-deterministic coun-
terpart to Brzozowski’s derivative, which we note dA(e, a). It is such that dB (L (e), a) =

3We observed combinatorial explosions in certain situations. In private communications with
Andy Chu, we found that this is also the case with known problematic expressions such as a?nan

from https://swtch.com/~rsc/regexp/regexp1.html.

https://swtch.com/~rsc/regexp/regexp1.html
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⋃ {
L (e ′) | e ′ ∈ dA(e, a)

}
. Where Brzozowski’s derivative produces a single expres-

sion, Antimirov’s derivative produces a set of expressions. A single expression can be
recovered by taking the disjunction of all of those; thus, this is equivalent to identify-
ing expressions modulo ACI of top-level disjunctions.

Just like dB can be seen as the transition function of a DFA, Antimirov’s derivative
dA is the transition function of an ϵ-free NFA. An advantage of Antimirov’s derivat-
ive is that it is no longer needed to identify regular expressions modulo identities.
Instead, they can be considered syntactically which simplifies the implementation.

It is defined as the least solution to:

dA(;, a) = ;
dA(ϵ, a) = ;
dA(a, a) = {ϵ}
dA(b, a) = ;, b 6= a

dA(e1|e2, a) = dA(e1, a)∪dA(e2, a)

dA(e1.e2, a) =
{{

e ′
1.e2 | e ′

1 ∈ dA(e1, a)
}∪dA(e2) if c(e1){

e ′
1.e2 | e ′

1 ∈ dA(e1, a)
}

otherwise
dA(e∗, a) = dA(ϵ|e.e∗, a)

We base our implementation on Antimirov’s derivative. Since it works directly on
the syntax, it is easier to extend to new operators and, in our application, there are
no benefits in immediately getting a DFA over an NFA.

1.4 Context-free grammars

A context-free grammar (Chomsky, 1956; Grune and Jacobs, 2008) is a tuple G =
(N ,T,R,S). N is the set of nonterminals and T is the set of terminals. R ⊂ N×(N∪T )∗

is the set of rules. N , T and R are finite. Members of N∪T are called symbols. S ∈ N is
a distinguished nonterminal called the start symbol. By convention, we use A,B ∈ N
for arbitrary nonterminals, a,b ∈ T for arbitrary terminals, x ∈ N ∪T for a symbol,
α,β ∈ (N ∪T )∗ for sequences of symbols and w ∈ T ∗ for a sequence of terminals, and
we write A →α for (A,α) ∈ R. A sequence of symbols is called a sentential form, and
a sequence of terminals a sentence.

Example (arithmetic grammar) The arithmetic grammar from the introduction
(Figure 1) is formally defined by G A = (NA,TA,RA,E), where:

• NA = {E ,T,F }

• TA = {
+,*,(,), i

}
• RA = {

(E ,T ), (E ,T+E), (T,F ), (T,F*T ), (F, i ), (F,(E))
}

1.4.1 Generating sentences

The language generated by a grammar G is written L (G), and is constructed using
the derivation relation ⇒. We write ⇒∗ for the reflexive and transitive closure of ⇒.
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Definition 1 (Derivation relation) The derivation relation⇒ is the least relation such
that αAγ⇒αβγ, for all sequences of symbols α and γ and rule A →β.

A sentential form or a sentence derived from the start symbol is said to be valid.
Conversely, a sentential form or a sentence is invalid if it cannot be derived from the
start symbol4.

Definition 2 (Valid sentential forms and sentences) A sentential form α is valid iff
S ⇒∗ α. A sentence w is a valid iff S ⇒∗ w.

Definition 3 (Language generated by a grammar) The language of a grammar is the
set of all valid sentences:

L (G) = {
w ∈ T ∗ | S ⇒∗ w

}
Example (Arithmetic derivations) Deriving some valid sentences of G A:

• E ⇒ T ⇒ F ⇒ n

• E ⇒ T +E ⇒ T +T ⇒ F +T ⇒ F +F ⇒ i +F ⇒ i + i

• E ⇒ T ⇒ F ⇒ (E) ⇒ (T ) ⇒ (F ) ⇒ (i )

Observe that a sequence of derivations can be read in both directions: from left
to right as a device for generating valid sentences, and from right to left as a proof
that a sentence is valid.

1.4.2 Giving structure to sentences

The derivation relation substitutes a nonterminal A with a sequence α, for some
rule A → α. In a derivation sequence, nonterminals are expanded until eventually
reaching a sentence. The nesting of the successive substitutions is not explicitly rep-
resented in the derivation sequence. However, the nesting structure usually reflects
semantic properties of the language. This permits giving compositional semantics
to the syntax: each rule is interpreted independently, and those interpretations are
composed. In practice, it is important for a parsing algorithm to do more than just
decide that a sentence belongs to the language; it must also recover this structure.
This is done with a derivation tree.

Definition 4 (Derivation tree) The derivation tree is a tree with nodes labelled by sym-
bols. The root of the tree is labelled by the start symbol. A node labelled by a nonter-
minal A has n children labelled x1 . . . xn iff there exists a rule A → x1 . . . xn . A node
labelled by a terminal is a leaf.

4Some works reserve the wording “sentential form” and “sentence” for valid inputs, using “se-
quence of symbols” for uncertain or invalid ones. Since we are concerned with the detection and
classification of invalid ones, it is more convenient for us to use sentential forms and sentences from
the start, and to qualify them after determining their validity.
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The sentences above correspond to the following derivation trees:

E

T

F

i

E

T + E

F T

i F

i

E

T

F

( E )

T

F

i

A grammar is unambiguous if there is a single derivation tree per sentence.

1.4.3 Cyclic grammars

A grammar is cyclic if there is a nonterminal A such that A ⇒+ A.
For instance, if a rule T → E was added to grammar G A, it would be possible

to derive E ⇒ T ⇒ E . Such a sequence can be repeated an arbitrary number of
times, leading to sentences admitting an infinite number of derivations. Rules with
an empty right-hand side, called ϵ-rules, can make the matter more complex by hid-

ing the cycle. Adding rules E → PE and P → ϵ allows sequences like E
rm==⇒ PE

rm==⇒
PPE

rm==⇒ PPPE
rm==⇒ . . ., which do not immediately appear to be cyclic. See Nederhof

and Sarbo (1996) for a detailed treatment of hidden left recursion.
We assume that the grammars and the LR automata processed by LRGrep con-

tain no such cycles. In particular, the construction of the reduction automaton in
Chapter 2 diverges in the presence of cycles.

This is not a problem in practice since cycles can be detected and removed. Fur-
thermore, cyclic rules do not present any practical interest and are likely the result
of a mistake in the specification of a grammar (they do not change the language re-
cognised, they only add new derivations). In Grune and Jacobs (2008), section 2.9
Hygiene in Context-Free Grammars gives algorithms for detecting and cleaning up
problematic grammars. In the Menhir parser generator, the “LoopDetection” mod-
ule is designed to reject these grammars while explaining the problematic construc-
tions to grammar authors.

1.5 Shift-Reduce parsers

Parsing algorithms construct a derivation sequence from a given input sentence.
LRGrep is specifically designed for LR parsers, a subclass of Shift-Reduce parsers,
but the underlying techniques are applicable to Shift-Reduce parsing methodologies
in general. In Chapters 2 and 3, we follow this dual perspective when introducing
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and formalising the DSL: first with a high-level view that manipulates grammatical
constructions and is applicable to all Shift-Reduce parsers, and then with a concrete
presentation that leverages the LR automaton and is suitable for an efficient imple-
mentation.

Shift-Reduce parsers operate on a restricted notion of derivation called rightmost
derivation. The derivation relation ⇒ is too loose for strict parsing concerns: a given
sentence generally admits multiple derivation sequences, even if the grammar is un-
ambiguous. Here are two possible derivations of i + i :

E ⇒ T +E ⇒ T +T ⇒ F +T ⇒ i +T ⇒ i +F ⇒ i + i

E ⇒ T +E ⇒ F +E ⇒ i +E ⇒ i +T ⇒ i +F ⇒ i + i

The choice lies in the nonterminal expanded at each step. The rightmost derivation
restricts this nonterminal to be the rightmost one.

Definition 5 (Rightmost derivation) The rightmost derivation
rm==⇒ is the least rela-

tion such that for all α ∈ (N ∪T )∗, w ∈ T ∗ and rule A →β:

αAw
rm==⇒αβw

Definition 6 (Right sentential form) A sentential form α is a (valid) right sentential
form if it is derivable from the start symbol using rightmost derivations:

S
rm==⇒∗

α

Rightmost derivations generate the same sentences as the unrestricted deriva-
tion but a much smaller set of sentential forms. In other words:{

w ∈ T ∗|S rm==⇒∗
w

}
= {

w ∈ T ∗|S ⇒∗ w
}{

α|S rm==⇒∗
α

}
⊂ {

α ∈ T ∗|S ⇒∗ α
}

A Shift-Reduce parser processes the input from left to right and attempts to re-
construct a rightmost derivation using a stack. At each step, two actions are possible:

• Shift moves a symbol from the beginning of the input to the top of the stack.

• Reduce which, given a rule A →α, removes the sequence α from the top of the
stack and replaces it with A.

Parsing i + i with the Shift-Reduce framework leads to the following sequence of
actions:
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Stack Input Suffix Action
ϵ i + i Shift
i + i Reduce F → i
F + i Reduce T → F
T + i Shift
T+ i Shift
T + i ϵ Reduce F → i
T +F ϵ Reduce T → F
T +T ϵ Reduce E → T
T +E ϵ Reduce E → T +E
E ϵ

The parse succeeds when the stack contains only the start symbol and the input
suffix is empty. This is because both Shift and Reduce maintain the invariant that
the stack can be expanded to the prefix of the input that has been consumed. At
any step, if we name the stack α, the source input u, the consumed prefix v and

the remaining suffix w such that u = v w , then α
rm==⇒∗

v . If α = S and w = ϵ, then

u = v and S
rm==⇒∗

u: the input has been derived from the start symbol. Conversely, if
no action sequence permits reducing the input to the start symbol, it is not a valid
sentence.

From a successful parse, we can recover the rightmost derivation by reading the

successive stacks from bottom to top. At each step we have that S
rm==⇒∗

αv : αv is a
valid right sentential form and α is said to be a viable prefix of a right sentential form.

A derivation tree can be constructed by interpreting the actions:

• a Reduce A →α action translates to a node labelled A with children labelled α

• a Shift step translates to a leaf

Formalisation Shift-Reduce parsing can be presented by relating states of the form
(α,u) with a non-deterministic transition relation (α,u) R (β, v) such that:

• (α, au) R (αa,u)

• (αβ,u) R (αA,u) when A →β

Both rules maintain the invariant that if (α,u) R (β, v) then βv
rm==⇒∗

αu. Thus a sen-

tence u is valid when (ϵ,u) R* (S,ϵ) since it implies that S
rm==⇒∗

u.

Definition 7 (Viable prefix of a rightmost sentential form) α is a viable prefix of a
rightmost sentential form if there exists w such that (α, w) R∗ (S,ϵ).

In this definition, “R∗ (S,ϵ)” means that there is a path to success: a viable prefix is
one in which the parser is not stuck; there exists at least one suffix w to complete the
recognition. The viable prefixes play a significant role in the rest of the dissertation,
but the formalisation of Shift-Reduce parsing was given for reference and is not used
after.
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1.6 LR parsers

Shift-Reduce is a general framework for parsing using rightmost derivations, but the
transition relation is non-deterministic and there is nothing to tell when to Shift
and when to Reduce (and, if reducing, which rule to reduce). The only guarantee is
that, if the input is entirely consumed and the start symbol is reached, then we have
built a rightmost derivation witnessing that the input is a valid sentence.

The problem can actually be refined by asking two questions:

1. Which actions are viable, in the sense that the stack remains a viable prefix
when they are applied?

2. Among the viable actions, which one is the right one for analysing the input
sentence?

LR parsers were proposed by Knuth (1965) to decide, at each step, which actions
are applicable. They offer a definitive answer to the first question and a partial one
to the second question. His observation, known as the fundamental property of LR
parsing, was that the viable prefixes of right sentential forms form a regular language
and, as such, can be enumerated by a finite automaton.

This automaton is the LR(0) automaton and is at the core of all LR parsers, but it
is not sufficient in itself. For many practical grammars, the automaton reveals that
multiple actions are often possible and so the second question remains.

The usual solution is to look ahead at a prefix of the remaining input, which is
often sufficient to determine that some of the actions are impossible. This is the
basis of LR(k) parsing, which use the k next symbols to select an action. The original
representatives are the canonical LR(k) parsers, which are unfortunately imprac-
tical due to their excessive size. Many practical variants have since been proposed,
notably optimised LR(1) parsers which compact the automaton (Denny and Malloy,
2010; Pager, 1977), or less expressive but simpler variants such as LALR(1) (DeRemer,
1969).

If the look-ahead information is not sufficient for determining that a single action
is possible, the automaton is said to have conflicts. LRGrep does not rely on a specific
technique for constructing the automaton and works with all automata of the LR(1)
family, including those with conflicts.

1.6.1 The LR(0) automaton

To construct the automaton, we need to adjust the grammar to explicitly handle the
end of the input. We add a new terminal $ to denote the end of the input and replace
the start symbol S with a new nonterminal S′ with the rule S′ → S$. The purpose of
this change is to distinguish a complete sentence, such as 1+2$, from a prefix 1+2
that can form a valid sentence but can also be continued (1+2+3, 1+2∗ . . ., etc).

Although we refer to the LR(0) automaton, three automata are actually involved:
the LR(0) NFA, DFA and PDA (Pushdown Automaton); see Gallier and Quaintance
(2021). We start by presenting the simplest one, the LR(0) NFA. It is mainly useful as
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an educational step. Determinising it leads to the LR(0) DFA, which is usually directly
constructed by LR parser generators. The DFA can be given a second interpretation
as a PDA. The PDA implements a Shift-Reduce parser, using the DFA to determine
the valid actions, ensuring that the stack always represents a path in the DFA. Unless
otherwise specified, the LR(0) automaton refers to the LR(0) PDA. This dual view is
important:

• as a finite automaton, it characterises the language of viable prefixes of right-
most sentential forms,

• as a pushdown automaton, it provides a (non-deterministic) strategy for es-
tablishing rightmost derivations.

A large part of this work builds on switching between these two views: using the fi-
nite automaton to reason about the possible prefixes or suffixes of the configurations
reached by the pushdown automaton.

Definition 8 (The LR(0) NFA) The LR(0) NFA is constructed by going through all items
of the grammar: starting at the left of the initial symbol and moving to the right sym-
bol by symbol, connecting a nonterminal immediately after the dot to the initial items
of the rules that define this nonterminal. Concretely:

• the states are the LR(0) items, i.e., the set of all A →α ·β for A →αβ ranging over
all rules

• the initial state is S′ → ·S$

• all states are accepting

• for each state A →α · xγ there is a transition labelled x to the state A →αx ·γ
• for each state A →α ·Bγ and rule B →β there is an ϵ-transition to the state

B → ·β
Figure 1.1 shows the LR(0) NFA of G A. Starting from the initial state S → ·E $, the

transitions describe the sequences that can be found on the stack. An ϵ-transition
simply means that more actions are possible in this situation, as more states are
reachable from the current one without consuming any input. Following a path in
the NFA tells us which actions are admissible for a Shift-Reduce parser. When reach-
ing a state with an outgoing transition labelled a, it is valid to Shift when looking
ahead at a. When reaching a state A →α · it is possible to reduce the rule A →α.

The next step is to determinise the NFA and obtain the LR(0) DFA. Figure 1.2
shows the LR(0) DFA of G A. Each state is annotated by the set of items active when in
this state. The sets are split into two parts (materialised by a horizontal bar) to distin-
guish items reached by following an ϵ-transition from other items. For instance, the
initial state starts with item S → ·E$, but because the dot is on the left side of nonter-
minal E , the ϵ-closure reveals that items E → ·T , E → ·T+E , etc., are also active.

Definition 9 (Kernel of a state) The set of items that are simultaneously active in a
state of the LR(0) DFA without following the ϵ-transitions is called the kernel of the
state. A state is uniquely identified by its kernel.
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S → . E $ S → E . $
E

E → . T
ϵ

E → . T + E

ϵ

S → E $ .
$

E → T .
T

T → . F

ϵ

T → . F * T

ϵ
ϵ

ϵ

E → T . + E
T

T → F .
F

F → . i

ϵ

F → . ( E )

ϵ

ϵ

ϵ

T → F . * T

F

E → T + . E

+

ϵ

ϵ
E → T + E .

E

F → i .
i

F → ( . E )
(

T → F * . T

*

ϵ

ϵ T → F * T .
T

ϵ

ϵ
F → ( E . )

E
F → ( E ) .

)

Figure 1.1: LR(0) NFA of the arithmetic grammar G A.
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Figure 1.2: LR(0) DFA of the arithmetic grammar G A.



CHAPTER 1. BACKGROUND ON GRAMMATICAL ANALYSIS AND LR PARSING 33

The set {S → . E $} is the kernel of the initial state. Adding all items reachable
through ϵ-transitions is the closure of the item set; this is the set used by the filter
operator to select states (as in the example from the Introduction).

Definition 10 (Incoming symbol) By construction, all incoming transitions of a state
have the same label. We define a function incoming(s) to get the incoming symbol of
state s. The initial state has no incoming transitions, therefore the incoming function
is partial.

The uniqueness of the incoming symbol lets us define a short notation for nam-
ing the states: xi for the i -th state with incoming symbol x, and we reserve the name
S0 for the initial state that has no incoming symbol. For instance, in G A, we have
incoming(E0) = E .

We lift it to sequences, allowing us to write incoming(~s) for~s ∈ S∗ such that:

incoming(S0) = ϵ

incoming(ϵ) = ϵ

incoming(~s · s) = incoming(~s) · incoming(s)

Stack of the LR(0) automaton The DFA determines which actions can be applied to
a Shift-Reduce parser. The stack of the Shift-Reduce parser that we introduced earlier
is made up of grammar symbols. With a naive interpretation, the DFA is traversed
for each stack to find which state is active at the end of the stack. This style is called
“Direct LR parsing” and is not efficient in an implementation. Instead, practical LR
implementations record the states of the DFA on the stack such that the current state
is always at the top of the stack. Parsing starts with only the initial state on the stack.
When following a transition, the target state is pushed onto the stack. To reduce a
rule A →α, |α| states are removed from the stack and the transition labelled A from
the new top of the stack is followed.

It is possible to recover the stack of a Shift-Reduce parser from the stack of an
LR parser by mapping the incoming function over the stack. The initial state has
no incoming symbol and is removed. Other states can be seen as tagged versions of
symbols, and the incoming function drops the tags. Hence our notation xi , where x
is the incoming symbol and i is a tag remembering the context in which this symbol
occurred, allowing quick decisions about valid actions.

Let’s illustrate with the G A grammar. After processing the input 1+2∗3, the stack
of a Shift-Reduce parser contains symbols T +F ∗ i , while the stack of an LR parser
has symbols S0T0+0 F0∗0 i0. With the LR stack, it is immediate to see that the current
state is i0. To reduce T → F*i , one needs to look only three states deeper in the
stack, consuming F0∗0 i0 and reaching +0, and find that the goto transition to follow

is +0
F−→ F0, ending with stack S0T0 +0 F0.

1.6.2 LR conflicts

The LR(0) automaton refines the Shift-Reduce parser by providing an efficient way to
decide which actions are applicable. If no action is applicable, we can reject the input
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Figure 1.3: An LALR automaton for G A

as early as possible. If one action is applicable, we can proceed deterministically. But
if multiple actions are possible, we have a problem.

In Figure 1.2, observe that in state T0 two actions are possible: shifting + to reach
the state +0 or reducing E → T . LR(0) does not provide enough information to de-
terministically decide which action should be taken. This situation is called an LR
conflict.

A conflict can be due to a real ambiguity in the grammar, when there really are
more than one way to parse some inputs, but it is often due to the limited power
of the automaton. Many conflicts can be solved just by looking at the next input
symbol. For instance, in G A we can see by looking at the predecessors of T0 that the
reduction can bring us to three states:

• E0 when preceded by S0,

• E1 when preceded by +0,

• E2 when preceded by (0.

When in E1, the only possible action is to reduce, so we repeat the process, until
ending either in E0 or E2. Neither of them have a transition on +. This solves the
conflict: in T0, if we are looking ahead at +, we should Shift, otherwise we can
Reduce(E → T ). All conflicts of G A can be solved this way, as shown in Figure 1.3.
It represents the automaton refined by annotating the conflicting reductions with
the possible lookahead tokens between square brackets.

This technique is known as Simple LR(1), or SLR(1). It is slightly more express-
ive than LR(0) and is sufficient for analysing G A. Unfortunately, conflicts are often
harder to resolve. Switching to more expressive parsing strategies takes care of some
of them (SLR(1) ⊂ LALR(1) ⊂ LR(1)). GLR takes another stance and explores all pos-
sible actions in parallel, with clever algorithms to avoid as much redundant work as
possible. Sometimes it is also possible to refactor the grammar to delay a decision
enough to resolve a conflict.
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E → E+E
E → E*E
E → i
E → (E)
%right *
%right +

Figure 1.4: Arithmetic parsing using Yacc directives

Intentional conflicts and truncation of the automaton Conflicts can also be intro-
duced on purpose to give a more concise specification of a language. Yacc (Johnson,
1975), an influential parser generator, offers directives that complement a grammar
to resolve conflicts by forcing it to shift or reduce depending on the symbols involved.
The other actions involved in the conflicts are simply removed from the automaton.

Figure 1.4 shows a grammar with Yacc directives that is equivalent to our gram-
mar G A. Interpreted as a Context-Free Grammar, it is ambiguous and leads to a con-
flicting automaton. However, the directives force + and ∗ to be right-associative,
and the order of the declarations gives priority to ∗ over +. This is enough to solve all
conflicts.

We see the benefits of using directives in this case: the grammar is terser, and
some would say more readable because of the explicit prioritisation of the operators.
In general, directives should be used with caution. Ideally, conflict resolution should
only change the admissible derivations without changing the language, but this is
difficult to reason about. In worse cases, conflict directives silence real ambiguities
and change the language being recognised in unpredictable ways.

Because this feature is widely used in practice, LRGrep supports automata with
removed actions. Conflict resolution affects LRGrep because it restrains the stacks
reachable by an LR parser. In the static analyses, over-approximation can lead to
false reports and we have to use a precise, but more complex, enumeration of stacks
that accounts for truncated actions. For compiling LRGrep patterns to a matching
automaton, it is fine to over-approximate as, in practice, it only leads to marginally
larger automata.

1.6.3 Formal definition of the LR(1) automaton

We write:

• a,b,c, z ∈ T for terminal symbols,

• A ∈ N for nonterminal symbols,

• x ∈ X , where X is T ∪N , for arbitrary symbols,

• Z ∈P (T ) for sets of terminal symbols,

• w ∈ ~T for sentences (sequences of terminal symbols),

• α,β ∈ ~X for sentential forms (sequences of symbols),
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• s ∈ S for automaton states, and s̄ for the initial state.

A transition in the automaton is a directed edge from a source state s to a target
state s′. Every transition is labelled with a symbol x. The “shift” transitions are the
transitions whose label is a terminal symbol; the “goto” transitions are those whose
label is a nonterminal symbol. We write Tr for the set of all transitions.

Because the automaton is deterministic, the target state s′ of a transition is de-
termined by s and x. Thus, a transition can be identified by the pair (s, x), and Tr can
be viewed as a subset of S×X . The target state of a transition is given by the function
target : Tr → S, which can also be viewed as a partial function target : S ×X * S.

We extend the target function to operate on sequences of symbols:

target(s,ϵ) = s
target(s, x ·α) = target(target(s, x),α)

Incoming symbol All incoming transitions of a state are labelled with the same
symbol, given by the partial function incoming : S * X . The function is not defined
on the initial state as it has no incoming transition.

Reductions We assume that the reduction actions of the automaton are given by a
function reduce, which maps a pair of a state s and a production A → α to a set of
terminal symbols. When the automaton is in state s, if the next input symbol—the
“lookahead symbol”—is a member of reduce(s, A → α), then the next action of the
automaton is to reduce the rule A →α.

Predecessors From the set of transitions we derive the function pred that associ-
ates a state with its predecessors:

pred(s) = {
s′ ∈ S | ∃x, target(s′, x) = s

}
We write predi for iterated applications, defined by:

pred0(s) = {s}
predi+1(s) = ⋃

s′∈pred(s)
predi (s′)

Well-formedness of reductions If reduce(s, A → x1 . . . xn) 6= ;:

• the predecessors of s should have incoming symbols that coincide with the
producers x1 . . . xn of the rule:

∀i < n, s′ ∈ predi (s), incoming(s′) = xn−i

• the n-th predecessors should have a goto transition on A:

s′ ∈ predn(s) =⇒ (s′, A) ∈ Tr
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Conflict-free automaton (actions are deterministic) A state s should have at most
one action per lookahead terminal a: a transition if (s, a) ∈ Tr or a unique reduction
if ∃A →α, a ∈ reduce(s, A →α).

Items after conflict resolution When constructing the LR(0) automaton, we intro-
duced the notion of items representing a position in the grammar, written A →β ·γ
provided that A →βγ is a rule. Since each state of the LR(1) automaton refines an
LR(0) state, we can in principle define the LR(0) items of an LR(1) state as the items
of the LR(0) state it refines.

However, conflict resolution can make some of the LR(0) items ineffective. Con-
sider the Yacc grammar from Figure 1.4: a state of the generated automaton might
have E → E ·+ E in its kernel and have the transition on + removed because it was
conflicting.

Definition 11 (Effective Items) We say that an LR(0) item A →β ·γ is effective in a
state s if there is a path leaving this state that leads to reducing A →βγ. The effective
items are given by items(s):

items(s) = {
A →β ·γ ∣∣ reduce(target(s,γ), A →βγ) 6= ; }

A state effectively has item A →β ·γ if, after following a path labelled γ, the state
reached can reduce the rule A →βγ for at least one lookahead terminal. An item can
be made ineffective in two ways: some transitions have been removed which prevent
following a path labelled γ (target(s,γ) is not defined), or the reduce action has been
removed (reduce(target(s,γ), A →βγ) is empty).

For some degenerate automaton with heavily truncated actions, this definition
is still an over-approximation of the reductions that can actually be performed on
an input. If γ contains a nonterminal A, it is possible that the path is still present in
the automaton (target(s,γ) is defined) and yet no input permits following the goto-
transition labelled A. Either because reductions of rules A → . . . have been removed
during conflict resolution, or because the paths leading to reduce these rules them-
selves have some unreachable goto-transitions. This problem of reachability is the
topic of Chapter 5: an exact solution can be computed but is non-trivial. In practice,
we found that the over-approximation above is sufficient and close enough to the
mental model the grammar author might have of the language recognised.

1.7 Dealing with Invalid Inputs

An input is invalid when, after consuming a certain prefix, the automaton enters a
configuration where there is no action compatible with the lookahead symbol. When
this occurs, the LR parser rejects the input, signalling to the rest of the program that
the input could not be analysed.

Unfortunately, most parsers discard the automaton’s configuration upon reject-
ing the input. Most generated parsers are presented as black boxes that keep their
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configuration hidden. Furthermore, optimisations employed by practical implement-
ations, such as the default reductions of Yacc, delay the detection of failures rather
than immediately reporting the error. When this is the case, the parsing stack is in an
unpredictable state for the developer. The configuration when the failure is reported
cannot be relied upon in general.

On a positive note, it is easy to identify the location where the input was rejec-
ted. A parser can always produce a message such as "Syntax error on line x,
column y". This is a bare minimum, but is quite unsatisfying from a production
compiler. There is no clear path beyond this point, and different solutions have been
proposed.

1.7.1 Failing Productions

As a first resort, it can be tempting to extend the grammar with rules to handle com-
mon mistakes. Instead of letting the parser fail because no action is applicable, we
introduce new actions to deal with anticipated invalid inputs.

For instance, the error message for a missing number used in the introduction
can be produced by a rule like:

E → ) { error("Expecting an integer") }

An input such as (1+) is recognised as a valid prefix by the parser, but the error is
reported by the semantic action when reducing E → ).

A variant of this approach involves writing productions that recognise a language
slightly larger than the correct one and filtering extraneous cases in the semantic ac-
tions. This can be useful for enforcing fine syntactic constraints with no structural
effects on the rest of the grammar. For instance, consider a language that restricts the
use of lowercase and uppercase identifiers to specific contexts. Instead of represent-
ing each case with a different terminal, one can use a single terminal and distinguish
between lowercase and uppercase identifiers in the semantic action.

Pros and Cons This approach is simple and pragmatic. No extra facilities are re-
quired from the parser, as long as it allows aborting the parsing process within an ac-
tion and ensures that actions are evaluated at predictable times. Accessing semantic
values in the action is straightforward (it is just like any other rule) and can be useful
for crafting detailed error messages.

However, this approach is also very limited and does not scale well. The example
above has two major flaws:

• It handles only a single case of a specific error message: expecting a number
when looking ahead at a ), whereas the same message applies to many other
cases; e.g., (1++), 1+*, etc.

• The semantic action triggers only if the parser reduces E → ). If the rest of the
input is incorrect, there is no guarantee that this reduction will occur, and the
parser can reject immediately after shifting ).
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There is nothing we can do about the second problem as it is an implementation-
defined behaviour. Different parser generators execute semantic actions at different
times5. Handling errors in semantic actions makes the grammar less declarative.

The first problem is difficult to address without additional facilities from the parser
generator. One can try to enumerate possible cases, but this introduces risks of new
conflicts and possibly real ambiguities. Whether a given lookahead token is valid de-
pends on the context in which a nonterminal is used, and thus this approach does
not generalise well.

When adding rules for rejecting specific inputs, the grammar no longer describes
the language one aims to recognise. This can be problematic when using the gram-
mar for purposes other than strict parsing. For instance, here are a few interesting
applications of an LR grammar:

• Extracting a readable reference grammar from an implementation, as done by
Catala for documentation purposes (Merigoux et al., 2021).

• Suggesting syntax completion to the user (Sasano and Choi, 2021).

• Recovering from incorrect inputs (Bour et al., 2018; Diekmann and Tratt, 2020).

• Grammar-guided fuzzing.

In all these use cases, the grammar is used as a generation device where it is desirable
to distinguish failing productions from regular ones to avoid generating failures.

1.7.2 The error Symbol (Yacc)

Yacc (Johnson, 1975) is a widely used LALR(1) parser generator that significantly im-
pacted the field. We have already seen that it introduced directives for resolving con-
flicts. It also has an interesting facility for dealing with errors, via a a special terminal
called error. This terminal cannot appear in the input but can be used in grammat-
ical rules like any other terminal. When the parser enters a rejecting configuration, it
replaces the invalid lookahead terminal with error and attempts to resume analysis.

Using error can address some limitations of the previous approach. The rule:

E → error { error("Expecting an integer") }

does not suffer from the flaws of our earlier attempt. Since the error symbol is in-
troduced only after the parser gets stuck, there is no risk of accidentally conflicting
with the language and it represents precisely the terminals that are invalid in this
situation.

However, error-rules are still susceptible to ambiguities. When attempting to ex-
haustively handle errors with error-rules, one quickly encounters situations where
multiple error messages apply, which manifests as LR-conflicts on the error symbol.

5Common strategies include eagerly reducing when there is no need for a lookahead to disambig-
uate actions or, instead, always delaying by a lookahead token. In GLR parsing, it is also common to
suspend evaluation of semantic actions in non-deterministic settings.
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$ more foo.ml
(2 + )
$ ocamlc -c foo.ml
File "foo.ml", line 1, characters 5-6:
1 | (2 + )

^
Error: Syntax error: ')' expected
File "foo.ml", line 1, characters 0-1:
1 | (2 + )

^
This '(' might be unmatched

Figure 1.5: A very confusing message due to Yacc’s error semantics

This is to be expected: there are many ways to explain a given error, and the LR form-
alism is not well equipped for ranking these explanations.

For static analyses, the story is better than with regular failing productions: error-
rules are easy to identify syntactically so other consumers of a grammar can take care
of properly handling (or ignoring) them.

Panic mode One last thing worth mentioning is the behaviour of a parser if it gets
stuck again when the lookahead has already been replaced by error. The simplest
solution is to simply reject the input, but Yacc offers another strategy. States from
the stack are popped until finding one that can handle the error symbol, or rejecting
the input if reaching an empty stack.

The net effect is throwing away the most recently parsed constructions, until
finding a place from which to resume the analysis. This is useful for providing coarse-
grained recovery. For a compiler, it can mean throwing away the current definition
and resuming on what looks like the next valid definition. For an interactive inter-
preter, it can mean resuming from a fresh prompt.

While convenient for recovery, this facility can be detrimental to error messages.
The effect of throwing away contents from the stack can be counter-intuitive without
a good understanding of the dynamics of an LR parser. When finding an error rule
after throwing contents, the semantic action has no way to know what was thrown
away and will likely report an error that would be applicable if this content was not
part of the input to begin with.

The problem is well illustrated by this issue of the OCaml compiler discovered
and fixed by François Pottier6. When fed with (2 + ), ancient versions of the com-
piler would report the very confusing message shown in Figure 1.5. This is due to a

6https://github.com/ocaml/ocaml/pull/10095

https://github.com/ocaml/ocaml/pull/10095
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rule equivalent to E → ( E error. Here is what happens:

• After consuming +, the stack contains (E+
• Looking ahead at ), the parser gets stuck: in this state, it has actions neither for
) nor for error

• The + is thrown away, and the parser looks again for an action on error from
stack ( E .

• This time it succeeds: the stack is (E , and the error rule matches

• It shifts error and reduces the rule, outputting the error message.

When a rule like E → ( E error succeeds, it seems natural to complain about a miss-
ing parenthesis in the semantic action. However, because of the strategy of “pop-
ping” stuck states from the stack, the informal meaning of the rule is that an error
happened sometimes after reading an opening parenthesis and an expression, not
immediately after.

The problem is solved by disabling this strategy to restore the intuitive meaning
of error. Therefore, by default, this Yacc facility is suitable for recovering from errors
but not for explaining them. Even when panic is disabled, error is not sufficient for
an exhaustive handling of failures and is very sensitive to ambiguities.

1.7.3 Merr: indexing error messages by LR(1) state

Merr (Jeffery, 2002) is the first solution that offered to separate the specification of the
grammar from the specification of error messages. In this approach, the grammar
and the parser are left unchanged. The error specification is a list of examples that
pair an invalid sentence with an appropriate error message. At runtime, if the parser
fails in a similar situation, the associated message is reported.

A possible Merr specification for our arithmetic example is:

1+ { "Expecting an integer" }
(1 { "Expecting a closing parenthesis" }

To determine the similarity, Merr uses the state of the LR(1) automaton reached at
the point of failure. This is a simple solution, easy to integrate with an existing parser.
It also offers an interesting workflow for refining error messages. When encounter-
ing a situation that deserves a good error message, one simply adds the problematic
input to the specification and pairs it with an appropriate explanation.

However, directly indexing on LR(1) states is not a good way to identify erroneous
situations. In particular, there is no guarantee that a state captures the features rel-
evant for explaining the error.

Without any reduction, an LR(0) state only captures local syntactic properties.
In our arithmetic example, it was necessary to reduce a complete expression to see
that a closing parenthesis was missing. Canonical LR(1) automaton mitigates this by
refining LR(0) states to account for all the lookahead tokens inherited from context.
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In this situation, the LR(1) state alone is sufficient to confidently report the missing
parenthesis.

But this is not without problems either. For some errors, such as the missing
number, the LR(0) state is sufficient. In these situations indexing on LR(1) state is
too fine-grained: a message that could apply to many situations ends up restricted
to the specific case reached by the example. Reasoning about the inherited tokens is
also difficult without assistance from specialised tools, so these situations are hard
to predict for the grammar author.

When the automaton is non-canonical, indexing on states can instead be too
coarse-grained. To keep the size of the automata manageable, parser generators re-
sort to different optimisations that lead them to reduce more aggressively than a ca-
nonical automaton. When this happens, a different error message might be selected
because the reductions have changed the current state.

This is again hard to predict for a grammar author and it is also fragile. The optim-
isations performed by the parser generator can be affected by seemingly unrelated
changes in the grammar or changes to the generator itself. Thus, the error specifica-
tion obtained by this approach is inherently unstable.

Finally, this approach still offers no way to guarantee complete coverage of syntax
errors.

1.7.4 Menhir: controlling reductions and coverage

Menhir (Pottier, 2016) also uses a list of examples for specifying error messages and
addresses the main flaws of Merr. It provides appropriate tooling to guide the gram-
mar author and it supports directives to control the reductions that happen before
looking for an error message.

Error coverage Menhir ensures comprehensive error handling by mandating that
each state susceptible to failure has a corresponding error message associated with it.
This feature automatically generates sample sentences triggering each failing state,
proving invaluable for maintenance, testing, and the writing of initial error messages
for a grammar. However, this comprehensiveness presents a significant drawback
in practice: realistic parsers often possess over a thousand potential failure states.
Maintaining such a vast repository of error messages incurs substantial overhead es-
pecially as the grammar evolves (even minor changes can necessitate widespread
updates).

Each invalid sentence is annotated with the LR(1) items of the state in which the
error is detected. A grammar author can use this to precisely understand the gram-
matical features characterised by the LR(1) state and to word a suitable error mes-
sage.

Computing the set of states that can fail and generating sentences to reach them
is surprisingly difficult for a non-canonical automaton that has gone through conflict
resolution. This requires solving the reachability problem for LR automata, which
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can be computationally expensive. In Chapter 5, we present a novel and more effi-
cient solution to this problem.

Controlling reductions The second feature, forcing some reductions on error, per-
mits generalising a situation before picking an error message. Let’s compare the
LRGrep pattern and the Merr example for the closing parenthesis:

[E /F → (E ·) ] { "Expecting a closing parenthesis" }
(1 { "Expecting a closing parenthesis" }

The LRGrep pattern specifies that the expression E should be reduced before match-
ing, while the Merr example left this unspecified. In Menhir, this is specified in the
grammar with the following annotation:

%on_error_reduce E T F

It says that when an error is detected, rules of the form E → . . ., T → . . ., or F → . . .,
should be reduced while this is permitted by the current state. This directive can
be specified for multiple nonterminals, and the order of the declarations is used to
choose which nonterminal to target when multiple ones are possible.

Comparison with LRGrep The effect achieved by an %on_error_reduce directive
is close to specifying a reduction in an LRGrep pattern, but comes with a few signific-
ant differences. The error specification in Menhir is spread across the list of examples
and the grammar directives, whereas LRGrep patterns unify reduction and selection.

By specifying and prioritising the reductions in the grammar, the strategy is fixed
once and for all before looking for an error message. Menhir compiles the directives
by changing the LR automaton, adding fallback actions that trigger the reductions
rather than immediately rejecting. Specifying a reduction at the pattern-level offers
more flexibility. For instance, by using multiple patterns, one can test different re-
ductions before choosing a message.

For the grammar author, we think that ordering the patterns is more intuitive
than ordering the directives: thinking about which error message should be selec-
ted first is more natural than thinking about which nonterminal should be reduced
first. It also leads to more composable specifications: changing a reduction at the
grammar-level has a global effect on error messages, while the impact of a pattern
change is much more localised.

Finally, we can see that the nonterminals to reduce are interpreted differently.
Menhir has a very immediate and operational interpretation of the directive: if a rule
with E on its left-hand side is reducible in the current state, it should be reduced
before proceeding. LRGrep interprets it as a target: it looks for a sequence of one or
more reductions that end up producing an E . This is why in Menhir’s case, we also
had to specify T and F , even though they are intermediate steps, while [E ] is enough
for LRGrep to find the sequence i → F → T → E .

We feel the effect is easier to predict for the grammar author: a pattern reducing
E matches if and only if there is at least one lookahead token that permits to reduce
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the suffix at the point of failure to E . Using Menhir, the author has to think about the
other nonterminals that might have to be reduced before E .

Conclusion

This chapter has provided a comprehensive overview of the theoretical foundations
underpinning LRGrep, focusing on regular and context-free languages, finite auto-
mata, and parsing techniques. We have explored various approaches to handling
error messages in LR parsers, from the error symbol in Yacc to more advanced solu-
tions like Merr and Menhir. Each method has its strengths and weaknesses, but they
all fall short in providing a seamless, comprehensive, and intuitive way to handle er-
rors in parsing. By leveraging the inner workings of LR parsers and building upon the
Merr and Menhir approaches, LRGrep aims to address these limitations and provide
a robust solution for error handling in LR parsing.



Chapter 2

Reduce-filter patterns

This chapter explores the class of reduce-filter patterns, presented in the introduc-
tion. These patterns can be viewed as a generalization of the approaches used by
Merr and Menhir, and offer a simple and efficient implementation. While they are
less expressive than the full LRGrep framework, they are representative of the unique
challenges involved in reasoning about reductions in LR parsers.

2.1 Reduce-filter patterns

We follow Merr and Menhir by using a specification separate from the grammar. Un-
like them, we use a custom pattern language rather than fixed sentences to charac-
terise error situations, and we associate a user-defined semantic action rather than
an error message. A single pattern can abstract over many failing configurations,
giving more control to capture the relevant features of an erroneous situation while
being less verbose than an enumeration of invalid samples.

The primitive patterns are made from symbols and LR(0) items. Since LR(0) items
are coarser-grained than LR(1) items, strictly speaking we lose some of the classific-
ation power of Merr’s approach. However, we argue that this is beneficial. If needed,
this power can be recovered in the full calculus (in Chapter 3) by constraining the
stack prefix rather than relying on the inherited lookaheads. Depending on LR(1)
items would leak implementation details of the automaton. Instead, a pattern can
be interpreted independently of a specific automaton: we give a formal semantics to
our calculus using only context-free grammars and rightmost derivations.

Like Menhir, we provide tools for working with error specifications:

• An interpreter that annotates an invalid sentence with the applicable reduc-
tions and the reachable LR(0)-items, allowing the author to identify which parts
are specific to this input and which parts should be matched. This enables a
workflow similar to Merr’s one, where an error specification can be increment-
ally refined as new problematic cases are discovered.

• An enumeration of sentences covering all reduce-filter patterns for a given
grammar, suitable for fuzzing, testing, and getting started.

45
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• A coverage analysis that handles the full calculus and can provide sample in-
valid sentences which are not covered by any error message yet.

The full calculus is defined in Chapter 3, the analyses are treated in Chapter 6,
and the actual tools are presented in Chapter 7. The rest of this chapter focuses on
interpreting the reduce-filter patterns, first at the grammar level as a set of sentential
forms, then on an LR automaton with an efficient decision procedure.

Definition 12 (Reduce-filter pattern) A reduce-filter is written:

[α/A1 →β1 ·γ1 . . . /An →βn ·γn ]

It consists of a sequence of symbols α and a set of items Ai →αi ·βi for 1 ≤ i ≤ n. Given
a set of items I , we also write [α/I ] as an abbreviation.

Informally, a reduce-filter pattern [α/A1 →β1 ·γ1 . . . /An →βn ·γn ] denotes the
set of stacks on which it is possible to apply a sequence of reductions leading to a
new stack with suffix α and for which items Ai →βi ·γi are active. We say that an
item A →α ·β is active for an LR stack when it is part of the closure of the item set of
the state at the top of the stack. For a sentential form, this means that it has the form
γα and that both γα and γA are viable prefixes.

We say thatα is the reduction target. When it is empty, matching happens without
reducing. In this case, the pattern denotes directly the stacks whose top state satisfies
the item constraints.

More often, α is a single nonterminal N and matches the stacks on which it is
possible to apply a sequence of reductions ending with a goto transition labelled N .
Occasionally, it can also be a sequence of nonterminals. When a grammar has ϵ-
rules, it is possible to follow consecutive goto transitions without shifting any input
symbol. Consider a grammar with rules A →β1BCβ2 and C → ϵ. Using BC as a re-
duction target identifies stacks from which it is possible to reduce B then X (trivially
via the ϵ-rule).

Thus, although any sequence of symbols α is allowed, only certain sequences of
nonterminals have a non-empty interpretation. We call them the viable reduction
targets. For non-looping grammars, the set of viable reduction targets is finite.

2.2 Reduce-filter patterns on sentential forms

To interpret the reduce-filter pattern [α /A1 →β1 ·γ1 . . . /An →βn ·γn ], we proceed
in two steps:

• Identify the set of sentential forms to which a sequence of reductions applies
that produces the suffix α.

• Retain only the sentential forms where the items Ai →αi ·βi remain active
after the reductions.
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The difficult part of the interpretation is to classify sentential forms according to the
applicable reductions. But not all sentential forms need to be considered: reductions
are sensible only on the forms that can appear on the stack of a shift-reduce parser,
the viable prefixes of right sentential forms. We start by precisely characterising the
viable prefixes. From there, we define a reduction relation to relate viable prefixes and
reduction targets. Finally, we give a denotational semantics by interpreting reduce-
filter patterns as subsets of viable prefixes.

2.2.1 Viable prefixes of right sentential forms

The viable prefixes of right sentential forms are the set of sentential forms that can
appear on the stack of a shift-reduce parser. Given a grammar G = (N ,T,R,S), we
consider the derived grammar G ′ = (N ′, N ∪T,R ′,S′) such that:

• The nonterminals of G ′ are a "′" tagged copy of N , N ′ = {A′|A ∈ N },

• The terminals of G ′ are the symbols of G (the terminals and the nonterminals),

• R ′ = {A′ → α | A → αβ ∈ R}∪ {A′ → αB ′ | A → αBβ ∈ R}, a rule of G ′ is either
a prefix of a rule of G , with nonterminals now considered as terminals, or a
prefix up to a nonterminal of G , which is replaced by its tagged nonterminal
counterpart in G ′.

The language VP = L (G ′) is the set of the viable prefixes of the right sentential
forms of G , or simply the viable prefixes. This set is regular (it is generated by a right-
regular grammar), and closed under prefixes (αβ ∈ VP =⇒ α ∈ VP).

Dealing with ϵ and ϵ-rules The set of viable prefixes admits a simpler definition by

means of an auxiliary notion of derivation
r=⇒, the least relation such that:

αA
r=⇒αβ if A →βγ

Only the last nonterminal can be expanded, and it can be expanded to any prefix of
a rule that defines it. The viable prefixes are the sentential forms derivable from the
start symbol via the reflexive and transitive closure of this relation:

VP =
{
α

∣∣∣S r=⇒∗
α

}
While this definition generates the expected set of sentential forms, some of the in-
termediate steps of the derivation only accidentally coincide with the right defini-
tion. Since we can take any prefix of a rule when expanding, we can in particular take
the empty prefix. If the sentential form before substituting ended with two nonter-
minals, say AB , after substituting B by ϵ, the form ends with A from which we can
derive more strings.
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Let us look at an example with grammar S → AB , A → abc, B → x y z. To show
that ab ∈ VP, many derivations are possible, such as:

1.
S

r=⇒ A ; using rule S → AB and prefix A
r=⇒ ab ; using rule A → abc and prefix ab

2.

S
r=⇒ AB ; using rule S → AB and prefix AB
r=⇒ A ; using rule B → x y z and prefix ϵ
r=⇒ ab ; using rule A → abc and prefix ab

Intuitively, only the first one is well-behaved though. If we think of the derivation tree
being built, the second derivation starts by introducing a node with two children A
and B , makes the second child empty, and continues the expansion in the first node.
The first derivation avoids these extra steps and directly explores the A branch.

Forbidding expansion with an empty prefix (requiring that β 6= ϵ in the definition

of
r=⇒) almost sidesteps the issue, but this does not feel right: ϵ is no longer derivable,

and ϵ-rules cannot be substituted anymore. This phenomenon, having a simple and
almost correct definition when ignoring cases involving ϵ, and in particular ϵ-rules,
is recurrent in this work. While this is benign when looking only at viable prefixes, as
soon as we look at the structure of derivations it becomes a real problem. For viable
prefixes, G ′ solves the issue by distinguishing “active” nonterminals N ′ which can be
substituted and can only appear as the last symbol, from “inactive” ones N .

When introducing LR grammars Knuth (1965) likely faced a similar problem. The
first definition of viable prefixes, called “characteristic strings”, concentrated on gram-
mars without ϵ-rules. Only after introducing the main concepts would he extend it
to all context-free grammars, handling the corner cases that arise when substituting
by ϵ.

In this work, we introduce the general case first and sometimes comment on the
simplifications permitted when there are no ϵ-rules.

2.2.2 Reduction relation

We introduce the reduction relation, noted (α)β ↓ γ, which holds when a viable prefix
αβ can be reduced to αγ by applying a sequence of zero or more reductions. The
simple case of reducing a single rule A →β to get from αβ to αA is witnessed by
(α)β ↓ A.

The three components α, β, and γ capture the effect of the reductions on the
sentential form:

• α is the prefix not affected by the reductions.

• β is the suffix consumed by the reductions.

• γ is the suffix produced, a sequence of nonterminals.
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(α)β ↓ γ is the least relation defined by these three inference rules:

α ∈ VP

(α)ϵ ↓ ϵ (red-base)

(αβ)γ ↓ ~C β 6= ϵ A →β~C αA ∈ VP

(α)βγ ↓ A
(red-outer)

(α)β ↓ ~A~C B → ~C α~AB ∈ VP

(α)β ↓ ~AB
(red-inner)

In the base case (red-base), no reduction is applied: the sentential form is just α,
it has to be a viable prefix but nothing is substituted (ϵ is replaced by ϵ). The other
rules capture the application of a single reduction, although we have to distinguish
two cases.

(red-outer) applies when a reduction consumes symbols from the stack. If the
stack αβγ reduces to αβ~C , and if it is possible to further reduce the production
A →β~C , then the rule concludes that αβγ reduces to αA, the prefix α is still un-
affected and βγ is consumed to produce A. The constraint αA ∈ VP guarantees that
the reduction is applicable on this stack, and the constraint β 6= ϵ prevents the rule
from overlapping with the third rule in certain situations.

(red-inner) applies when a reduction does not consume any new symbol from
the stack. This happens when reducing a production with a single nonterminal on
the right-hand side, e.g., if (α)β ↓ B and A → B is reducible, then (α)β ↓ A. The B
produced by a previous reduction is replaced by A and the frontier between α and
β is unchanged. It also happens when ϵ-rules are involved in the derivation. For
instance if C → ϵ and αC ∈ VP, then (α)ϵ ↓C by (red-inner). ϵ-rules can also cause
multiple nonterminals to be produced. If (α)β ↓ B and αBC ∈ VP, then (α)β ↓ BC .

Interpreting reduce-only patterns The reduction relation lets us interpret a pat-
tern of the form [γ ]: it denotes exactly the sentential forms αβ such that (α)β ↓ γ.
A corollary is that the γ such that ∃αβ, (α)β ↓ γ are exactly the viable reduction tar-
gets. In other words, if Øαβ, (α)β ↓ γ, then a pattern [γ/A1 →α1 ·β1 . . . /An →αn ·βn]
always denotes the empty set.

Untouched prefix and ϵ-rules In the definition of (α)β ↓ γ, a special treatment is
needed to distinguish the untouched prefix α from the suffixes.

It is tempting to use a simpler relation that considers the viable prefixes reachable
by a single reduction step, say ↓r , such that αβ ↓r αA when αA ∈ VP and A →β. The
reflexive and transitive closure is then sufficient to model the effect of sequence of
reductions. However we cannot recover the semantics of [γ ] from this relation. The
likely candidate Γ= {

αβ |αβ ↓r∗ αγ
}

is too big. As expected, it contains the αβ such
that (α)β ↓ γ, but it can also contain elements with accidentally overlapping prefixes
or suffixes: the α1α2β such that (α1)α2β ↓α2γ and the αγ1β such that (α)γ1β ↓ γ1γ2,
for α=α1α2 and γ= γ1γ2.
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In the absence of ϵ-rules, sequences of reductions produce at most one symbol
in the end. The viable reduction targets are simply the γ ∈ {ϵ}∪N . The relation ↓r suf-
fices to interpret [γ ]: [ϵ] denotes VP and [A] denotes

{
αβ |αβ ↓r+ αA

}
, where ↓r+ is

the transitive and irreflexive closure of ↓r .

Example (matching reduction on G A) We can see that [E ] matches (F + i with the
following derivation:

((F+i )ϵ ↓ ϵ by (red-base)
((F+)i ↓ F by (red-outer) reducing F → i
((F+)i ↓ E by (red-inner) reducing E → F
(()F+i ↓ E by (red-outer) reducing E → F+E

2.2.3 Interpretation

Now we have all the tools to interpret a reduce-filter pattern to a set of sentential
forms.

A pattern [γ/A1 →α1 ·β1 . . . /An →αn ·βn] denotes the set of the αβ such that:

1. αβ is reducible to αγ. That is, (α)β ↓ γ.

2. The items Ai →αi ·βi are active in αγ: for all 1 ≤ i ≤ n, there exists α′ such that
α′αi =αγ and α′Ai ∈ VP.

2.3 Reduce-filter patterns on LR stacks

In the rest of this chapter, we interpret the reduce-filter patterns on the stack of an
LR automaton. This semantics is more operational and amenable to an efficient im-
plementation using a finite automaton.

The concepts we built for sentential forms transpose to the stacks of LR auto-
mata:

• The viable prefixes map to the viable stacks, which are efficiently enumerable.

• The reduction relation maps to the (viable) reduction automaton. It consumes
a suffix of a stack from right to left and can be used to enumerate the applicable
reductions and their targets.

• The viable reduction targets become distinguished subsets of states of the re-
duction automaton.

• A reduce-filter pattern is representable as a subset of these target states. To
recognise a set of reduce-filter patterns, one can simply extract the subset of
the automaton reaching the target states of these patterns.



CHAPTER 2. REDUCE-FILTER PATTERNS 51

2.3.1 Viable stacks

Enumerating the stacks of an LR automaton is quite straightforward. The LR auto-
maton already enumerates the sentential forms, but the stack of a practical LR parser
stores the states of the automaton, not the symbols. A viable stack is simply a path
in the automaton, a sequence of states obtained by starting from the initial state and
following the outgoing transitions—ignoring the labels.

For matching a reduce-filter pattern, it is more efficient to analyse a stack starting
from the right end (the current state of an LR automaton). So we enumerate the
stacks in reverse, growing a suffix until reaching the initial state:

• The procedure starts with a singleton suffix s, for any s ∈ S

• A suffix~s grows to all the suffixes s′ ·~s, for s′ ∈ pred(head(~s))

• Suffixes are grown until reaching the initial state (which has no predecessor),
at which point they are viable stacks.

For this, we assume that all states are reachable from the initial state. The set of viable
stacks is generated by a non-deterministic automaton and is therefore regular.

Conflict resolution and stack reachability If some actions have been removed from
the automaton during conflict resolution, the stacks obtained by this procedure can
be an over-approximation of the reachable ones. An LR automaton configured with
a viable stack is well-behaved, but it is possible that no input can actually put the
automaton in this configuration when starting from the initial configuration. The
obvious case is when that would require taking a shift transition that was removed.
It can also happen that some goto transitions are impossible to take because the re-
duce actions that would allow reaching them were removed.

We distinguish viable stacks and reachable stacks. The formers over-approximate
the latters and are sufficient for recognition purposes. It is fine to recognise a few
more stacks, even if these will never be exercised in practice. The reachable stacks are
an exact enumeration of the stacks an LR automaton can reach when starting from
the initial configuration, but are harder to determine. Chapter 5 studies the problem
of reachability. Chapter 6 computes the set of reachable stacks and uses it to answer
coverage questions that require an exact enumeration to avoid false reports.

2.3.2 Reduction automaton

The (viable) reduction automaton is an ϵ-NFA (RA,S,δRA,Initial, {s0}) that plays a
role on viable stacks similar to the reduction relation (α)β ↓ γ on the viable prefixes.
The reduction relation is built by exploring the reductions applicable on the viable
prefixes of a grammar; the reduction automaton is built by exploring the reductions
applicable on the viable stacks of an LR(1) automaton.

The purpose of this automaton is to recognise the suffixes of a stack that can be
reduced, in such a way that it is easy to determine the applicable reductions, the
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targets reached by these reductions, and the intermediate stacks visited by the se-
quence of reductions. It does so by exploring suffixes of viable stacks and simulating
the applicable reductions.

Besides an initial state Initial, the states of the automaton are of two forms:

• Suffix(s,~s′,T ′) represents a configuration in which the stack is known to have
suffix s ·~s′ and the lookahead symbol belongs to T ′ ∈ P (T )/{;}. s is the last
state consumed from the input stack and ~s′ is a simulated suffix made of the
targets of goto transitions.

• Reduce(s,~s′,T ′, A,α) represents an intermediate configuration entered when
reducing a rule of the form A →αβ. The stack has suffix s ·~s′, the lookahead
symbol belongs to T ′, and A is the nonterminal labelling the goto transition to
follow after consuming the remaining producers α from the top of the stack.

In both cases, s represents the last state consumed from the stack being analysed,
~s′ represents the suffix appended to the stack by the goto transitions followed after
reducing, and T ′ the lookahead symbols that permit to reach this configuration.

For each s ∈ S, there is a transition Initial s−→ Suffix(s,ϵ,T ). The initial trans-
itions are there to determine the state at the top of the LR stack—the current state of
the LR parser being analysed. Once the current state is known, the rest of the auto-
maton explores the applicable reductions. For this, the other transitions simulate the
reduction actions performed by an LR parser:

• Suffix(s,~s′,T ′) ϵ−→ Reduce(s,~s′,T ′′, A,α) when T ′′ = T ′∩reduce(top(s·~s′), A →α),
T ′′ 6= ; to simulate an LR parser starting to reduce A →α (permitted since it is
in a state where the rule is reducible for the lookaheads in T ′′ ⊂ T ′).

• Reduce(s,~s′,T ′, A,ϵ)
ϵ−→ Suffix(s,~s′ ·target(top(s ·~s′), A),T ′) to simulate the goto

transition followed when reducing A →α after |α| symbols have been con-
sumed from the stack.

• Transitions of state Reduce(s,~s′,T ′, A,α) when α 6= ϵ simulate the consumption
of one symbol from the stack, depending on~s:

– A single transition Reduce(s,~s′,T ′, A,α)
ϵ−→ Reduce(s,pop(~s′),T ′, A,pop(α))

when~s 6= ϵ. In this case, the symbol is consumed from the simulated suf-
fix~s′ and not from the input.

– A transition Reduce(s,ϵ,T ′, A,α)
s′−→ Reduce(s′,ϵ,T ′, A,pop(α)), for each

s′ ∈ pred(s). The simulated suffix is empty; we have to consume one state
from the input stack to proceed. The current state is known to be s, and
since the input is a viable stack, the predecessor has to be one of pred(s);
we add a labelled transition for each candidate.

This first transition takes us to a state for the form Suffix(s,ϵ,T ), representing
the facts that the state at the top of the stack is s, no reductions have been performed
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yet (no goto transition has been followed), and no assumption has been made about
the lookahead symbol. As outgoing transitions are followed, the set of lookaheads
decreases, accumulating the conditions made on the lookahead symbols by the re-
ductions applied.

2.3.3 Reduction targets

In a standard non-deterministic automaton, reaching a final state establishes the
membership of the input sequence to the language recognised by the automaton.
In the reduction automaton, reaching a state Suffix(s,~s′,T ′) establishes that the re-
duction relation (α)β ↓ γ holds for the stack being analysed for an appropriate choice
of α, β and γ.

More precisely, let ~u =~v s~w be a viable stack such that the state Suffix(s,~s′, a) is
reached after consuming the suffix s~w . Then we have (α)β ↓ γ for:

α = incoming(~v s)
β = incoming(~w)
γ = incoming(~s′)

The lookaheads T ′ matter for the LR automaton and do not affect the relation. The
incoming function recovers a sentential form from a sequence of LR states. The com-
ponents are related as follows:

• In the automaton, s is the first state of the suffix that has not been consumed
by a reduction. In the relation, α is the prefix of the viable prefix that has not
been consumed by a reduction.

• The suffix ~w consumed by the automaton corresponds to β, the suffix of the
sentential form consumed by the reductions.

• ~s′ is the sequence of states followed by the goto transitions, and it directly co-
incides with γ, the sequence of nonterminals appended to the viable prefix by
the reductions.

2.4 Interpretation

When studying the reduction relation, we observed that in a reduce-filter pattern
[γ/A1 →α1 ·β1 . . . /Ai →αi ·βi ], the viable targets γ are the ones appearing in the
relation (α)β ↓ γ. In the reduction automaton, γ translates to the set of~s′ such that
incoming(~s′) = γ, for the~s′ appearing in states of the form Suffix(s,~s′,T ′).

This gives an efficient strategy for matching those patterns: a pattern [γ ] recog-
nises the stacks reaching any state Suffix(s,~s′,T ′) such that incoming(~s′) = γ. An
implementation can traverse the automaton while consuming the stack from right-
to-left and accept the input as soon as such a state is reached.

To handle the filter part on a sentential form αβ such that (α)β ↓ γ, we had to
further constrain the reduced form αγ: an item A →αi ·βi is active if αi is a suffix of
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αγ and if replacing αi by A resulted in a viable prefix. With an LR state, we can tell
immediately whether an item is active or not by looking at its items. The LR state at
the top of the simulated stack when reaching a state Suffix(s,~s′,T ′) is top(s~s′): the
target of the last goto transition, or simply s if no goto transition has been followed
(~s′ = ϵ).

This gives an efficient decision procedure for reduce-filter patterns, where all the
expensive computations can be done in a preprocessing step:

1. Compute the reduction automaton from the LR(1) automaton.

2. Determine the set of states of the form Suffix(s,~s′,T ′) where incoming(~s′) = γ

and Ai →αi ·βi ∈ items(top(s~s′)).

3. During execution, when an LR parser fails, look for a suffix of its stack reaching
one of those states.

This strategy generalises naturally to matching multiple patterns at once: each pat-
tern translates to a target subset of states of the reduction automaton. A single scan
of the stack with the reduction automaton looking for these subsets suffices to list all
the matches.

2.4.1 Implementation details

An efficient implementation will benefit from some generic optimisations:

• Determinising the automaton with the subset construction guarantees worst-
case linear time recognition (Rabin and Scott, 1959).

• If the patterns are known ahead of time, the automaton can be pruned by re-
moving the states from which no target is reachable.

• Minimising it can bring significant reductions in memory consumption (Hop-
croft, 1971; Jacobs and Wissmann, 2022; Valmari, 2012).

But significant gains can be achieved by applying domain-specific knowledge.

Wildcard transitions When reducing a rule A → x1 . . . xn from a stack with suffix
s0 . . . sn , the states s1 . . . sn are entirely determined by s0 and x1 . . . xn . Using the target
function:

• s1 = target(s0, x1)

• s2 = target(s1, x2)

• . . . si = target(si−1, xi )
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This means that the reduction automaton, when simulating a reduction, does not
really need to look at the intermediate states s1...sn ; the final state s0 is sufficient to
determine which goto transition to follow.

For an efficient implementation, it is interesting to consider a wildcard variant
of the reduction automaton that exploits this fact by adding an extra _ symbol to the
input alphabet, interpreted as any LR(1) state. We can then refine the transitions
that simulate the consumption of an input symbol from the stack when reducing.
Transitions leaving Reduce(s,ϵ,T ′, A,α) when |α| > 1 are now labelled "_":

Reduce(s,ϵ,T ′, A,α)
_−→ Reduce(s′,ϵ,T ′, A,pop(α)) for each s′ ∈ pred(s), when |α| > 1

The other cases are unchanged. When |α| = 1, the transitions are labelled s′ rather
than _. When |α| = 0, this is the case where the end of the reduction has been reached
and we have an ϵ-transition simulating a goto transition.

Delaying branching using wildcards can significantly decrease the size of the re-
duction automaton after determinisation. Informally, introducing wildcard trans-
itions change the shape of paths simulating a reduction state from being tree-shaped
to being fan-shaped. Compare both approaches on an artificial example:

• Tree-shaped:

{Suffix(s0, …, T')}

{Reduce(s1, ε, T", A, b)}

s1

{Reduce(s2, ε, T", A, b)}

s2

{Suffix(s5, …, T")} {Suffix(s6, …, T")} {Suffix(s7, …, T")} {Suffix(s8, …, T")}

{Reduce(s3, ε, T", A, ε)}

s3

{Reduce(s4, ε, T", A, ε)}

s4

s5 s6 s7 s8

• Fan-shaped:

{Suffix(s0, …, T')}

{Reduce(s1, ε, T", A, b),
Reduce(s2, ε, T", A, b)}

_

{Suffix(s5, …, T")} {Suffix(s6, …, T")} {Suffix(s7, …, T")} {Suffix(s8, …, T")}

{Reduce(s3, ε, T", A, ε),
Reduce(s4, ε, T", A, ε)}

_

s5 s6 s7 s8
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The wildcards permitted merging more states in the subset construction. The former
grows quadratically as the productions get longer, while the latter grows linearly. On
realistic applications, the impact is really significant, and we think that this optim-
isation is mandatory for an efficient implementation.

2.4.2 Annotating LR Stacks

An immediate application of the reduction automaton is to annotate LR stacks with
the possible reductions. Here is an example of the output from LRGrep’s interpreter
annotating the stack of the OCaml parser processing the source code "1":

Parser stack (most recent state first):
- line 1:0-1 INT

/ constant
/ simple_expr
/ expr
/ list(structure_element)
/ list(post_item_attribute)

/ seq_expr
/ structure

- entrypoint implementation

It is not necessary to know the definitions of the symbols involved to get an idea
of what is happening. The output can be read as follows:

• The stack has two states: the integer 1 represented by the terminal INT, and the
entrypoint implementation (we are trying to parse an OCaml implementation
file).

• The integer can be reduced to a constant, then to a simple_expr, to an expr,
and to a seq_expr; at this point the stack has the shape implementation,
seq_expr.

• After the seq_expr, it is possible to reduce an (empty) list of attributes, leading
to a stack with three entries:

implementation,seq_expr,list(post_item_attribute)

• After the attributes, it is possible to reduce an (empty) list of other structure
elements, leading to a stack with four entries:

implementation,seq_expr,list(post_item_attribute),list(structure_element)

That list contains the definitions in the continuation of the file, but there are
none in this example.

• The seq_expr, list(post_item_attribute), list(structure_element) can
be reduced to structure, a sequence of definitions that forms a syntactically
valid OCaml module.
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The annotations are a compact notation for the intermediate stacks that the LR
parser can go through when reducing the input. Annotations on the same column
represent points where the stacks diverge, while annotations on a more indented
column represent an extension of the stack below.

For instance, / constant and / simple_expr are on the same column and fol-
lowed by the entrypoint. They represent the two stacks:

• implementation: constant
• implementation: simple_expr

On the other hand, / list(post_item_attribute) appears above / seq_expr and
is more indented. This represents:

• The base stack implementation: seq_expr
• The sub-stack implementation: seq_expr; list(post_item_attribute)

For reference, here are all the stacks reached while reducing, omitting the entrypoint:

• INT (the starting stack, before any reduction)

• constant
• simple_expr
• expr
• seq_expr
• seq_expr; list(post_item_attribute)
• seq_expr; list(post_item_attribute); list(structure_element)
• structure

Conclusion

Existing solutions specifically designed to provide error messages for LR parsers,
Merr (Jeffery, 2002) and Menhir (Pottier, 2016), work by associating messages with
LR states, provided as a list pairing invalid inputs with error messages. Using the
current LR state alone quickly proves to be too limiting, as a single state captures
only local properties of the syntactic context. Menhir solves this problem by letting
the author of the grammar specify some nonterminals that should always be reduced
before looking for an error message, abstracting some syntactic details away.

We introduce the reduce-filter patterns that offer an alternative solution. A pat-
tern is designed to provide a concise way to identify a syntactic situation by spe-
cifying simultaneously the reductions and the states to look for. The nonterminals to
reduce are interpreted as a search problem local to the pattern rather than as a global
sequence of instructions to prepare the parser before looking for an error message.
This offers a more declarative approach—the interpretation of a pattern is independ-
ent from the rest of the specification, and rather than using samples of invalid inputs,
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we use grammatical items to characterise LR states, which is more general and less
sensitive to implementation details of the LR automaton.

Given a context-free grammar, we interpret the patterns as a subset of right sen-
tential forms, using the reduction relation (α)β ↓ γ. For practical applications, an ef-
ficient implementation strategy is to interpret the patterns as a regular subset of the
stacks of an LR parser. To do so, we show how the viable stacks can be enumerated
from right-to-left, and we define the reduction automaton RA, a finite automaton
that enumerates the sequence of reductions applicable to a stack. A reduce-filter
pattern translates directly to a subset of this automaton.



Chapter 3

A calculus for error specifications

In this chapter, we introduce a dialect of regular expressions for analysing the stacks
of LR parsers, generalising the reduce-filter patterns of the previous chapter. After
an informal explanation of this dialect and the rationale behind it, we give two se-
mantics:

• A big-step semantics that relates terms to the sentential forms they recognise.

• A small-step operational semantics for matching stacks of LR parsers, using an
appropriate extension of regular expression derivation.

The regular expressions are defined in terms of a grammar G—the atomic expres-
sions consist of symbols and items from the grammar. The big-step semantics are
used to give a precise meaning to the language constructions independently of a spe-
cific implementation—their meaning depends only on the grammar.

Given an LR automaton that recognises this grammar, the small-step semantics
pave the way for an efficient implementation using finite automata, which is the
topic of Chapter 4.

3.1 A regular-expression dialect for matching LR stacks

Our calculus extends regular expressions with the two operators presented earlier:
item filters and reductions. We also support variable bindings1 for naming certain
parts of the input. In the formal presentation, the variables store positions of the
input; in the actual implementation, they are used to refer to the semantic values
saved on the stack.

1Also known as (named) captures or capture groups in the context of regular expressions.
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The complete calculus has the following syntax:

Exp 3 e ::= 0 | ϵ | x
| e1 ·e2

| e1 | e2

| e∗

| /A →α ·β
| [e ]
| n = e

Name 3 n
Var 3 v ::= ns | ne

The base cases are 0, which recognises nothing, ϵ, which recognises the empty
word, and x, for x ∈ T ∪N , which recognises a single symbol x. Then come the usual
regular expression operators:

• The concatenation e1 ·e2 recognises the words uv such that u is recognised by
e1 and v is recognised by e2. We omit the · when it is not ambiguous: a ·b · c
can be written abc and e · /A →α ·β can be written e /A →α ·β.

• The disjunction e1|e2 recognises a word u if it is recognised by e1 or by e2.

• The Kleene star e∗ recognises zero or more copies of e; it is equivalent to the
expansion e∗ = ϵ|e ·e∗.

Variables Variables are introduced by a binding operator n = e that gives a name
to the subsequence of the input consumed by the sub-expression e. The name n is
drawn from an arbitrary set Name of variable names. When matching, the binding
defines two variables noted ns and ne, which refer to the starting and ending posi-
tions of the subsequence that matched.

Filters and reductions The reduce operator [e ] and the filter operator /A →α ·β
generalise the reduce-filter patterns of the previous chapter. Unlike standard regular
operators, filters and reductions do not just denote a set of words; they also constrain
their prefix2.

A filter is noted /A →α ·β and recognises situations where the item A →α ·β is
active. The filter does not consume input; it only restricts the possible matches. For
instance, the terms E and E /F → (E ·) recognise a single arithmetic expression: the
former recognises any expression, while the latter only recognises those occurring
after an opening parenthesis. The expression is consumed by E , and the matching
situations are further filtered by /F → (E ·).

A reduction is introduced by square brackets [e] and recognises a stack suffix ~s
if ~s can reduce to a stack suffix that is recognised by e. For instance, the term [E ]
recognises T + i , F ∗ i , etc., since they all can reduce to E .

2Like the lookbehind operator found in certain dialects of regular expressions. Symmetrically,
the lookahead operator constrains the suffix without consuming it (Mamouras and Chattopadhyay,
2024).
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To simplify the implementation, reductions cannot be nested, e.g. [[e]] is not
allowed. A single use of the reduction operator is sufficient to explore all sequences
of reductions that are consistent with a lookahead terminal. In principle, nesting two
reductions would allow impossible sequences of reductions that result from starting
with reductions allowed by a lookahead a and followed by reductions allowed by a
different lookahead b. This use is forbidden.

Variable bindings are also not allowed inside reductions. The expression between
brackets represents a suffix that the stack could potentially reduce to but which is
never actually materialised in the LR parser, so we cannot extract information from
it.

Ambiguous matching With bindings, the interpretation of an expression can be-
come ambiguous: when there are multiple ways to match the input, which sub-
sequences should be bound to the variables? We address this question by fixing dis-
ambiguation rules for the operators.

A disjunction e1|e2 prioritises its left-hand side: if both sides recognise u, it will
be recognised by keeping the variable bindings from e1. For instance, (v = i )|i binds
v if it succeeds, while i |(v = i ) never binds v .

A concatenation e1 · e2 favours its right-hand side, and this disambiguation has
priority over operators in the sub-expressions. For instance, matching the sentence
abc against (v = a|ab)(v = c|bc) binds v to c.

The Kleene-star e∗ is disambiguated by keeping the shortest match, which coin-
cides with the disambiguation given to the expansion ϵ|e ·e∗.

A reduction [e ] is also subject to ambiguities when multiple sequences of reduc-
tions are applicable. For instance, matching the incomplete arithmetic expression
(1+2+3 with [E ] is ambiguous. A parser analysing it would get stuck with the stack
(T+T+i , which admits the following sequence of reductions: (T+T+i ⇐ (T+T+F ⇐
(T +T +T ⇐ (T +T +E ⇐ (T +E ⇐ (E . Since the pattern [E ] looks for reductions end-
ing in E , it can succeed at the steps (T +T +E , (T +E and (E . We choose to keep the
candidate that consumes the fewest stack symbols—in this case, T +T +E . In the im-
plementation, this is configurable: the author of the error specification can choose
to keep the shortest or the longest match (explained in Section 7.1.4).

3.1.1 Right-to-left matching

When assessing an LR failure, the most recent information is found at the top of the
LR stack. For instance, parsing (1∗2+$ with the LALR automaton for G A (Figure 1.3)
fails in a configuration with stack S0(0T0+0. Looking at state +0 is sufficient to see
that + is missing an operand: if a + has just been shifted, we know that the prefix
T + of the rule T +E was correctly recognised. Looking deeper in the stack can re-
veal that a closing parenthesis will still be missing after adding an operand, but this
information is of little value in this case.

The common case is therefore to extract information from some suffix of the
stack and only occasionally look deeper. This is reflected in the matching language
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by assuming that only the right end of the expression is anchored; we are looking for a
matching suffix. The end of the stack should coincide with the end of the expression,
but it is fine if some prefix of the stack has not been consumed. This is equivalent
to interpreting an expression as if a wildcard _∗ had been prepended, matching any
prefix.

Matching from right-to-left simplifies the derivation of item filters and reduc-
tions and leads to smaller matching automata where decisions are taken earlier. Look-
ing for a suffix optimises for the common case. In the rare event where one would
want to match a specific prefix, it is still possible to opt out of this behaviour by fil-
tering with items matching the entry point of the grammar.

3.2 Formal Semantics

We give formal semantics to the calculus by relating an expression to the sentential
forms it recognises. To account for the operators that restrict the matching situations
without consuming input, we use the notation (α)β to represent the decomposition
of the input αβ into a prefix α which is only constrained and a suffix β which is con-
sumed.

The matching relation noted (α)β ∈ e establishes that under prefix α, the suffix β

is consumed and recognised by expression e. This relation does not handle variable
bindings.

The capturing relation deals with the whole language. It is written (α)β @ ρ ∈ e
where ρ ∈ Var *N is a valuation, a partial function that maps the variables bound in
e to the offsets matched in αβ. (α)β @ ρ ∈ e holds when e recognises input β under
prefix α while binding values ρ.

3.2.1 The matching relation

The matching relation is the least relation satisfying these rules:

(α)ϵ ∈ ϵ
(m-ϵ)

(α)x ∈ x
(m-sym)

(α)β ∈ e1 (αβ)γ ∈ e2

(α)βγ ∈ e1e2
(m-seq)

(α)β ∈ e1

(α)β ∈ e1|e2
(m-disj-l)

(α)β ∈ e2

(α)β ∈ e1|e2
(m-disj-r)

(α)β ∈ ϵ|ee∗

(α)β ∈ e∗ (m-star)

A →βγ ∈ R αA ∈V P

(αβ)ϵ ∈ /A →β.γ
(m-item)

(α)γ ∈ e (α)β ↓ γ
(α)β ∈ [e]

(m-red)

The first rules give the semantics of the standard regular expression operators,
lifted to decompose the input into a constrained prefix α and a consumed suffix β:

• (m-ϵ) states that the empty expression recognises the empty sentential form
under any prefix.

• (m-sym) states that expression x recognises the symbol x under any prefix.
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• (m-seq) composes two expressions in sequence: if expression e1 recognises β

under prefixα and expression e2 recognisesγunder prefixαβ, then e1e2 recog-
nises βγ under prefix α. The prefix of the second expression should coincide
with the prefix and the input of the first one.

• (m-disj-l) handles disjunction when the left side matches; (m-disj-r) handles
the symmetric case. If e1 recognises β under prefix α, then so do e1|e2 and
e2|e1.

• (m-star) handles the Kleene star by expanding e∗ to ϵ|ee∗. If ϵ|ee∗ recognises
β under prefix α, so does e∗.

The (m-item) rule handles item filters. It does not consume any input but con-
strains the prefix to be a viable prefix in which item A →β ·γ is active: the prefix
should end with β, and substituting β with A should yield a viable prefix.

The (m-red) rule handles reductions by means of the reduction relation (intro-
duced in 2.2.2). [e ] recognises β under prefix α if e recognises γ under prefix α and
β reduces to γ under the same prefix.

3.2.2 The capturing relation

The capturing relation refines the matching relation, extracting more information
from the input—in other words, ∃ρ, (α)β @ ρ ∈ e ⇐⇒ (α)β ∈ e. Before giving the
rules, let us look at ρ.

Valuations The ρ component of the relation is a valuation, a partial function that
gives a value to the variables bound in e. This is used to interpret the binding con-
struction n = e, which gives a name to the subsequence of the input that matched e.
This is reflected in ρ by binding the two variables ns and ne to the positions where
the input consumed by e started and ended.

For instance, extracting the position of a b surrounded by sequences of a can be
done with the expression a∗(v = b)a∗. Applied to input “aaaba”, we get (ϵ)aaaba@ρ ∈
a∗(v = b)a∗ where ρ(vs) = 3 and ρ(ve) = 4. Positions of the input are numbered start-
ing from 0: 0a1a2a3b4a5.

Valuations are introduced with three constructions:

• ; is the valuation with an empty domain.

• v 7→ i is a singleton valuation that only maps v ∈ Var to i ∈N.

• ρ3 = ρ1 ]ρ2 is the left-leaning union: ρ3(v) = ρ1(v) if v ∈ dom(ρ1) else ρ3(v) =
ρ2(v) if v ∈ dom(ρ2); we have that dom(ρ3) = dom(ρ1)∪dom(ρ2).

Rules The capturing relation (α)β @ ρ ∈ e is the least relation satisfying the rules:

(α)ϵ @ ;∈ ϵ
(c-ϵ)

(α)x @ ;∈ x
(c-sym)
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(α)β @ ρ ∈ e1

(α)β @ ρ ∈ e1|e2
(c-disj-l)

(α)β @ ρ ∈ e2

(α)β @ ρ ∈ e1|e2
(c-disj-r)

(α)β @ ρ1 ∈ e1 (αβ)γ @ ρ2 ∈ e2

(α)βγ @ ρ1 ]ρ2 ∈ e1e2
(c-seq)

(α)β @ ρ ∈ ϵ|ee∗

(α)β @ ρ ∈ e∗ (c-star)

A →βγ ∈ R αA ∈V P

(αβ)ϵ @ ;∈ /A →β.γ
(c-item)

(α)γ ∈ e (α)β ↓ γ
(α)β @ ;∈ [e]

(c-red)

(α)β @ ρ ∈ e

(α)β @ (ns 7→ |α|]ρ]ne 7→ |αβ|) ∈ n = e
(c-var)

Most rules are direct extensions of the corresponding rules from the matching
relation, additionally defining a valuation:

• (c-ϵ), (c-sym), and (c-item) yield an empty valuation.

• (c-red) also yield an empty valuation; variables cannot be bound inside reduc-
tions. In [e], the inner expression e is not matched against the input, so there
would be no positions to store, and we can simply use the matching relation to
relate an expression to a suffix it can reduce to.

• (c-disj-l) and (c-disj-r) leave the valuation unchanged.

• (c-seq) merges the valuations of the sub-expressions; the left-leaning union
keeps the leftmost binding in case of redefinition. Since matching is done
right-to-left, the leftmost bindings are the deeper in the stack and are the most
“recently” seen ones.

• (c-star) is still defined by expansion to ϵ|ee∗ and threads the valuation un-
changed.

• (c-var) records the starting and ending position of the sub-expression in the
valuation.

Disambiguating derivations When introducing the calculus, we observed that there
are often different ways to match an expression. Formally, this translates to hav-
ing multiple ways to relate a given input γ to an expression e: a family of sentential
forms αi , βi and valuations ρi such that (αi )βi @ ρi ∈ e such that αiβi = γ. The rules
we gave to prioritise certain interpretations translate to an ordering on the family of
proof derivations establishing that (αi )βi @ ρi ∈ e, such that the smallest element is
the disambiguated interpretation.

We define the ordering relation on two derivations:

. . .

(α1)β1 @ ρ1 ∈ e
< . . .

(α2)β2 @ ρ2 ∈ e

where α1β1 = α2β2 (they recognise the same input but they can consume a different
suffix). The application of most rules is directed by the syntax of expressions and de-
terministic; we discuss those later, but generally, the strategy is to do a lexicographic
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ordering on the premises, from right-to-left. Cases that require more attention are
the disjunction and reduction rules.

When relating two applications of (c-disj-l) and (c-disj-r), we favour the left side:

(α1)β1 @ ρ1 ∈ e1

(α1)β1 @ ρ1 ∈ e1|e2
(c-disj-l) < (α2)β2 @ ρ2 ∈ e2

(α2)β2 @ ρ2 ∈ e1|e2
(c-disj-r)

For reductions, we favour the reduction that consumed the fewest symbols:

(α1)γ1 ∈ e (α1)β1 ↓ γ1

(α1)β1 @ ;∈ [e]
(c-red) < (α2)γ2 ∈ e (α2)β2 ↓ γ2

(α2)β2 @ ;∈ [e]
(c-red) ⇐⇒ |β1| < |β2|

Other cases are directed by the syntax of the expression, so we only need to relate
different applications of the same rule:

• The base cases (c-ϵ), (c-sym) and (c-item) are deterministic and don’t need to
be disambiguated.

• (c-var) and (c-star) are ordered by their premises, e.g.:
. . .

(α1)β1 @ ρ′
1 ∈ e

(α1)β1 @ ρ1 ∈ n = e
<

. . .

(α2)β2 @ ρ′
2 ∈ e

(α2)β2 @ ρ2 ∈ n = e
m

. . .

(α1)β1@ρ′
1 ∈ e

< . . .

(α2)β2@ρ′
2 ∈ e

• (c-seq) favours the right-hand side:

. . .

(α1)β1 @ ρ11 ∈ e1

. . .

(α1)β1 @ γ1 ∈ ρ12e2

(α1)β1 @ ρ11 ]ρ12 ∈ e1e2
<

. . .

(α2)β2 @ ρ21 ∈ e1

. . .

(α2β2)γ2 @ ρ22 ∈ e2

(α2)β2 @ ρ21 ]ρ22 ∈ e1e2
m

. . .

(α1β1)γ1 @ ρ12 ∈ e2
< . . .

(α2β2)γ2 @ ρ22 ∈ e2

∨
. . .

(α1β1)γ1 @ ρ12 ∈ e2
= . . .

(α2β2)γ2 @ ρ22 ∈ e2
∧. . .

(α1)β1 @ ρ11 ∈ e1
< . . .

(α2)β2 @ ρ21 ∈ e1

3.3 A Derivative for the LRGrep Calculus

With the big-step semantics in place, we now turn our attention to providing an equi-
valent small-step semantics operating directly on the stack of an LR parser.

Just like we introduced a matching relation first which we used to construct the
richer capturing relation, we start with the matching derivative dM (k, s) ∈P (K ) and
follow with the capturing derivative dC (k, s) ∈ (P (Var)×K )∗. They operate on a dia-
lect of continuations k ∈ K that generalises expressions and are derived with respect
to states s ∈ S of the LR automaton.

Both derivatives build upon Antimirov’s derivative (Antimirov, 1996); see Sec-
tion 1.3.2 for a short introduction. Before going into the details, let us review the
main changes and their motivations.
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Working with LR(1) States Derivation is performed with respect to a state of the
LR(1) automaton rather than to a grammatical symbol. This is done because in prac-
tice we are matching against the stack of an LR(1) parser rather than a sentential
form. Item filters and reductions are also easier to interpret on LR(1) states. This
changes the alphabet the derivatives are operating on to S. The expressions, how-
ever, are still defined on symbols and we directly interpret a symbol as the set of LR(1)
states with this incoming symbol and an item as the set of LR(1) states in which this
item is effective (as defined by items, page 37).

Explicit Continuations The set of standard regular expressions is closed by deriv-
ation, but this is not the case for the reduction operator. The intermediate state of
a reduction being recognised is generally not representable as a regular expression,
so we define an explicit notion of continuation, “what remains to be matched”. This
also enables a more uniform treatment of variables and identification of successful
matches (acceptance).

Right-to-left Matching For clarity and because this is central to our approach for
recognising LR(1) stacks, we explicitly define right derivatives. The main change is to
mirror the treatment of sequences e1e2: e2 is considered first, followed by e1.

Ordered Continuations The disambiguation rules order the different ways a suffix
can be matched. This translates to the image of the dC derivative being a sequence
rather than a set, to preserve the order between the different continuations. Given
~k = dC (k, s) and i < j < |~k|, continuation ~ki has a higher priority than ~k j . If both

continuations succeed, the valuation associated with~ki ’s branch should be retained.

Variables to Update The dC derivative yields the set of variables to update along
each continuation. In the big-step semantics, we had to keep track of valuations
mapping variables to input positions. The small-step semantics has no knowledge
of the input position nor of the bound variables; it is solely concerned with the ef-
fects of a single transition. The rest of the interpretation is left to a meta level that
feeds the input symbol-by-symbol to dC , keeping track of the input position, of the
active continuations and of the valuation associated with each continuation. When
dC (k, s)i = (V ,k ′), k ′ should inherit the valuation associated to k with all variables
v ∈V updated to the current position.

Finite Derivatives We say that the derivatives are finite if, starting from an arbit-
rary continuation, iterating the derivative function reaches only a finite number of
continuations.

A technicality in the definition of Brzozowski’s derivative is that regular expres-
sions had to be considered at least modulo associativity, commutativity and idem-
potence (ACI) of disjunction for the derivatives to be finite. Antimirov’s derivative
relaxed this restriction: its image is a set of regular expressions that can be seen as a
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form of normalisation modulo ACI of top-level disjunction, but the regular expres-
sions themselves can be considered syntactically.

If we are solely interested in the semantics alone, it is not important that the de-
rivatives are finite. For instance, to see if continuation k matches~s with dM , it suf-
fices to iterate the function until reaching the end of the vector. Let us consider the
function d∗

M defined by d∗
M (κ,ϵ) = κ and d∗

M (κ,~s′ · s) = d∗
M (

⋃
k∈κ

dM (k, s),~s′). Then the

interpretation of k on stack~s is given by the set d∗
M ({k} ,~s).

Finite derivatives are relevant for generating an automaton. If we know that,
when starting from an initial continuation, iterated application reaches only a finite
set of derivatives, we can use this set (together with the initial continuation) as the
states of the automaton and the derivative function as the transition function.

Since we want, ultimately, to compile our expressions to an automaton, we need
dC to have finite derivatives. Like Antimirov’s derivative, we consider continuations
syntactically. However, we do not have a set but a sequence of pairs of a set of vari-
ables and a continuation. For the derivatives to be finite, we restrict the image to se-
quences of unique continuations. The variables are not considered in this process—
equivalence is determined solely by the syntactic equality of continuations. This is
done explicitly in the definition of the derivative by the use of a normalising con-
catenation operator, noted ¯, which keeps only the first occurrence, in the order of
indices, of a continuation.

It is fine to keep only the first occurrence of a continuation, even if the other oc-
currences appear bound with different variables, because the sequence represents
the continuations that should be matched against the remainder of the input in or-
der of priority. Bound variables do not affect the language recognised by a continu-
ation; they are only observed when matching succeeds. A continuation that appears
twice necessarily recognises the remainder in the same way, accepting it or rejecting
it twice. If it is accepted, the first occurrence has the priority and only its valuations
are used.

Acceptance condition When using Brzozowski’s or Antimirov’s derivatives to build
an automaton, accepting states are determined by checking if the empty string ϵ

is in their denotation. This can be done syntactically using the c function. In our
dialect, the filter operator introduces additional complexity, making it insufficient
to simply check for ϵ in the denotation of a state. Specifically, given an expression
/A →α ·β, we might have (γ)ϵ ∈ /A →α ·β for some γ, but accepting immediately
does not check that the prefix γ passes the filter.

To address the challenges posed by the filter operator, we propose an alternat-
ive approach that involves following an extra transition to determine acceptance.
Specifically, instead of relying on a syntactic check, we represent acceptance using a
distinguished continuation noted ■. Input is accepted when following a transition
targeting this continuation. The conditions imposed by an eventual item are moved
to the label of a transition; if there are no conditions, there will simply be a transition
for each label.

As a result, acceptance is always delayed by one transition, which may seem
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k ∈ K ::= k •e | k •R(Q,QT ) | k • !v | ä | ■
Q,QT ∈ P (RA)/{;}

Figure 3.1: Syntax of continuations

counterintuitive at first but is actually necessary to accurately capture the behaviour
of filtered expressions and does not affect correctness for other operators. The only
case that could be problematic is when reaching the end of the input: what if there is
no room for delaying by an extra symbol? Fortunately, the first state of the LR stack
is the initial state, making the stack one symbol longer than the corresponding sen-
tential form. So it is always fine to delay by one symbol.

3.3.1 Continuations

The syntax of continuations is given in Figure 3.1. The continuations are linear and
managed like a stack: they are used to stash the pending work discovered during
derivation, but they do not introduce new control structures.

The continuation k • e means that e should match first (against the top of the
stack), followed by k. The expression appears on the right and the continuation on
the left to reflect the right-to-left matching.

The binding continuation k • !v means that the current position of the input is to
be saved in variable v , after which matching continues with k.

ä is used to mark the bottom of the continuation stack and ■ represents accept-
ance. ä derives to ■: once reaching the bottom of the stack, all pending work has
been done and the acceptance condition is satisfied. To match an expression e, it is
lifted to ä• e. For instance, let us look at ä• /A →α ·β. Deriving with respect to s
succeeds if A →α ·β ∈ items(s). In this case, /A →α ·β is removed from the stack
and derivation reaches ä, producing the new continuation ■: the expression has
been recognised.

A reduction continuation k•R(Q,QT ) represents an intermediate step in the pro-
cess of recognising the suffixes reached by a sequence of reductions. Q and QT are
non-empty sets of states of the reduction automaton. Q is the set of active states,
representing the current positions in a non-deterministic traversal of the reduction
automaton, and QT is the set of target states. In other words, k •R(Q,QT ) recog-
nises sequence of states leaving Q for which there is a path to QT . If a state in QT is
reached, a match has been identified and derivation proceeds with k. The equations
governing the derivation of reductions are treated separately in Section 3.3.4.

3.3.2 The matching derivative

The matching derivative is the least fixed point of the equations given in Figure 3.2.
Deriving a continuation k •e is done by analysing e:

• If e is empty, the derivative is the derivative of the continuation k.
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dM (k •ϵ, s) = dM (k, s)

dM (k •x, s) =
{

{k} if x = incoming(s)

; otherwise
dM (k •e1 ·e2, s) = dM (k •e1 •e2, s)
dM (k •e1|e2, s) = dM (k •e1, s)∪dM (k •e2, s)

dM (k •e∗, s) = dM (k • (ϵ | e∗ ·e, s))

dM (k •/A →α.β, s) =
{

dM (k, s) if A →α.β ∈ items(s)

; otherwise
dM (ä, s) = {■}
dM (■, s) = ;

Figure 3.2: The matching derivative

• The derivative of a symbol x with respect to state s is the singleton continu-
ation k if x is the incoming symbol of the state s and is empty otherwise.

• A concatenation k•e1 ·e2 is flattened to a continuation k•e1•e2, and derivation
proceeds on the flattened continuation.

• For a disjunction e1|e2, each side is derived independently and the union of
both sets of continuations is returned.

• For the Kleene star e∗, the derivation proceeds on the expansion ϵ | e∗ · e.
Some care needs to be taken when implementing it as the recursive call is non-
decreasing. Consider the following term with a cyclic expansion:

dM (k •ϵ∗, s) = dM (k • (ϵ | ϵ∗ ·ϵ, s)
= dM (k •ϵ, s) ∪ dM (k •ϵ∗ ·ϵ, s)
= dM (k •ϵ, s) ∪ dM (k •ϵ∗ •ϵ, s)
= dM (k •ϵ, s) ∪ dM (k •ϵ∗, s)

In practice, visits of a Kleene star are memoized before expansion, and a second
encounter during the traversal of the same expression is just skipped.

• The item filter /A →α ·β is treated by looking at items(s), the effective items
of s (Definition 11, page 37). If A →α ·β is in items(s), the derivation proceeds
on the continuation. Otherwise, the derivative is empty.

• Finally, the two base cases: deriving ä results in ■. Deriving ■ has no continu-
ation.

Deriving with respect to sequences We lift dM to work on sequences:

dM (k,ϵ) = {k}
dM (k,~s · s) = ⋃{

dM (k ′,~s)
∣∣ k ′ ∈ dM (k, s)

}
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dC (k •ϵ, s) = dC (k, s)

dC (k •x, s) =
{

(;,k) if x = incoming(s)

ϵ otherwise
dC (k •e1 ·e2, s) = dC (k •e1 •e2, s)
dC (k •e1|e2, s) = dC (k •e1, s)¯dC (k •e2, s)

dC (k •e∗, s) = dC (k • (ϵ | e∗ ·e, s))

dC (k • /A →α ·β, s) =
{

dC (k, s) if A →α ·β ∈ items(s)

ϵ otherwise
dC (k •n = e, s) = dC (k • !ns •e • !ne, s)

dC (k • !v, s) = bind(dC (k, s), v)
dC (ä, s) = (;,■)
dC (■, s) = ϵ

Figure 3.3: The capturing derivative

3.3.3 The capturing derivative

The capturing derivative is defined as the least solution to a similar set of equations
but handles the whole language. We write κ,κ′ ∈ (P (Var)×K )∗ for elements of the
image and V ∈ P (Var) for sets of variables. The images are sequences of pairs of a
set of variables and a continuation, where the variables are the ones to update when
reaching the continuation. The order of elements in the sequence implement the
disambiguation rules, such that earlier continuations have higher priority.

Figure 3.3 gives the equations for all cases except the reduction operator, which
is left to Section 3.3.4. Two helpers are used define the derivative:

• To ensure that the derivatives are finite (see paragraph 3.3 page 66), κ¯κ′ con-
catenates and normalises sequences. When reading the equations, just think
of it as plain concatenation, the precise definition is given below.

• Variable updates are introduced with bind(κ, v) which adds v to the set of vari-
ables of all elements of κ:

bind(κ, v)i = ({v}∪V ,k) where (V ,k) = κi

Compared to the matching derivative, the differences are:

• In all cases, order matters; the image is a sequence, not a set.

• In the image, each continuation is paired with a set of variables to update. The
leaf cases return an empty set of captures, the variable case augments the vari-
able sets with a new variable.

• In the disjunction case, the two sub-sequences are concatenated, such that
the order of continuations reflects the disambiguation rule (continuations of
e1 are prioritised over continuations of e2).
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• As in dM , an implementation should treat the Kleene star equations carefully.

• The derivation of k•n = e wraps e between two variable binding continuations
for the starting and ending positions of e.

• k • !v is handled by deriving k and using bind to update variable v .

Normalised sequences

The normalising concatenation ¯ strips the continuations that are already in the left-
hand side from the right-hand side, or simply skips the right-hand side if the left one
already has a success continuation ■. It can be defined as follows:

κ¯κ′ = κ ·prune(κ′)

where:

prune((V ,k) ·κ′) =


ϵ when ∃i ,V ′, κi = (V ′,■)

prune(κ′) when ∃i ,V ′, κi = (V ′,k)

(V ,k) ·prune(κ′) otherwise

prune(ϵ) = ϵ

In a normalised sequence, a continuation occurs at most once and the success con-
tinuation ■ can appear only at the last position. ϵ and all singletons are already nor-
malised, and ¯ produces a normalised sequence when applied to two normalised
sequences.

3.3.4 Deriving reductions

We still have to define the derivation of continuations k•[e ] and k•R(Q,QT ). e is first
translated to a set QT ⊂ RA of states of the reduction automaton (see Section 2.3.2)
whose suffixes match e. This set offers a low-level, semantic view of the sequence of
the reductions described by e. Derivation then follows paths of RA reaching a state
in QT .

Arithmetic example To derive [E /F → E · ] we start by deriving E /F → E · with the
matching derivative. Looking at the LALR automaton for G A (Figure 1.3, page 34), we
see that the only state for which the matching derivative is non-empty is E2:

dM (ä•E /F → E · ,E2) = dM (ä•E • /F → E · ,E2)
= dM (ä•E ,E2)
= {ä}

dM (ä•E /E → E · , s) = ; when s 6= E2

The only predecessor of E2 in the LR(1) automaton is (0 and deriving again with
respect to (0 succeeds: dM (ä,(0) = {■}. We conclude that the target states are:

QT = {
s ∈ RA

∣∣ ∃T ′, s = Suffix((0,E2,T ′)
}
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Derivation should follow paths of the reduction automaton starting from the initial
state and reaching the states in QT .

Defining the derivative on reductions

dC (k • [e], s) =
{

dC (k •R({Initial} ,QT ), s) when QT 6= ;
ϵ otherwise

where QT = {
Suffix(s,~s′,T ′) ∈ RA

∣∣ ■∈ dM (ä•e, s~s′)
}

dC (k •R(Q,QT ), s) =
{

dC (k, s)¯k ′ when Q ∩QT 6= ;
k ′ otherwise

where k ′ =
{

k •R(Q ′,QT ) when Q ′ 6= ;
ϵ otherwise

Q ′ = progress(Q, s,QT )

progress(Q, s,QT ) = ⋃
q∈closure(Q)

{
q ′ ∈ RA

∣∣∣ ∃qT ∈QT , q
s−→ q ′ −→∗ qT

}

Figure 3.4: Deriving reductions

Figure 3.4 gives the equations characterising derivation of reductions.
The derivation of k • [e ] is initiated by translating e to the states QT recognising

the reductions matched by e and proceeds to deriving k •R({Initial} ,QT ), if QT is
not empty.

To derive a continuation k •R(Q,QT ), we start by checking if a target state was
reached (Q ∩QT 6= ;). If this is the case, then some paths of the reductions being
simulated succeeded and we continue by deriving k.

k ′ represents the configurations reached by progressing in the reduction auto-
maton. Q ′ = progress(Q, s,QT ) list the states that are one step further towards the
targets. If Q ′ is empty, the reduction failed to reach a target state and we abort the
continuation. progress(Q, s,QT ) walks the reduction automaton, starting from states
in Q and following the transitions labelled s on a path to states in QT . Since RA is
an ϵ-NFA, the closure of Q is taken before looking for a transition. If the wildcard
transition optimisation is used (see Section 2.4.1), transitions labelled _ should also
be followed.
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3.4 Relating both semantics

We can relate the matching relations with the derivatives, focusing on the dM func-
tion and (α)β ∈ e relation to simplify the discussion.

Claim 1 Let~s · s ·~s′ be the stack of an LR parser. Then, we have:

■∈ d∗
M (ä•e, s ·~s′) ⇐⇒ (α)β ∈ e

where:
α = incoming(~s · s)
β = incoming(~s′)

That is, the dM function can be used to find the stack suffixes matched by an
expression e, decomposing the stack into a prefix (~s · s) and a suffix (~s′) that coincide
with the prefix (incoming(~s ·s)) and suffix (incoming(~s′)) recognized by the matching
relation (α)β ∈ e.

If the LR automaton has undergone conflict resolution (some actions have been
removed), the claim weakens to:

■∈ d∗
M (ä•e, s ·~s′) =⇒ (α)β ∈ e

Missing reductions can prevent some sentential forms from matching.

Conclusion

In this chapter we introduced a calculus designed to classify the stacks of failing LR
parsers by extending the reduce-filter patterns with the regular expression operators
and variable bindings.

We gave a big-step semantics relating expressions to sentential forms which serves
as a reference specification of the calculus. But the main take away is the derivative
dC which implements a small-step semantics directly on the stack of an LR parser. It
is the basis of the compilation strategy of the next chapter.



Chapter 4

Compilation to matching automata

In the previous chapter, we established a dialect of regular expressions that is suit-
able for analysing the stack of LR parsers and we defined an appropriate notion of
derivation. In this chapter, we use derivation to construct and optimise automata
that recognise multiple expressions at once.

Let us recall the notions used in this chapter:

• We are given an LR(1) automaton with states s ∈ S, an initial state noted s0, and
a function pred : S →P (S) that maps a state to the set of its predecessors. s′ ∈
pred(s) means that there exists a transition from s′ to s. We also have a partial
function incoming : S * N ∪T that gives the symbol labelling the incoming
transitions of a state. It is not defined on the initial state; this state has no
incoming transition.

• For our dialect of regular expressions, we have defined a notion of continu-
ations K equipped with a derivation function dC : K ×S → (P (Var)×K )∗. A reg-
ular expression e is lifted to a continuation ä• e, which can then be derived.
Matching succeeds when derivation reaches a distinguished continuation writ-
ten ■.

dC (k, s) is an ordered sequence of pairs (V ,k ′), where k ′ is a continuation and V
is a set of variables. Each continuation can be seen as a state of a non-deterministic
automaton with dC as the transition function. ä• e is the initial state and ■ is the
only accepting state. Each pair (V ,k ′) of dC (k, s) is a transition leaving state k with
two labels:

• s is the input symbol allowing to take this transition.

• V are the variables in which to store the current position of the input.

An input~s is recognised if there is a path from the initial state to ■. From this path,
we can construct a mapping from variables to input positions by remembering the
last position where a variable v ∈ Var was encountered in the sets V annotating the
transitions of the path.

74
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Contrary to a standard NFA, the outgoing transitions of a state are ordered to
disambiguate matches. If there are multiple paths labelled ~s from the initial state
to ■, the matching is ambiguous as each path potentially gives a different variable
mapping. To disambiguate between two paths, we favour the one that picked the
earliest transitions. That is, the two paths have a shared prefix starting from the initial
state after which they diverge. Assume that the shared prefix ends at some state k
where the two paths picked a different successor in dC (k, s), say at indices i and j .
The less ambiguous path is the one which picked the successor at index min(i , j ).

Our goal is to obtain an efficient deterministic matching automaton that com-
putes the same result in a single pass. The main steps are:

1. Determinisation. We devise a notion of determinisation that preserves the dis-
ambiguation semantics and recognises multiple expressions at the same time.
In essence, we augment the standard subset construction to a “sub-sequence
construction” that preserves the relative order of continuations along trans-
itions.

2. Exploration. The standard subset construction for an automaton with states Q
comes with two variants:

• A systematic one, defining a new automaton with states P (Q), resulting
in an automaton that is always exponentially larger.

• For practical purposes, a “trimmed” one, where only the states Q ′ ⊂P (Q)
that are reachable from the initial state are considered.

Trimming is relevant in our case, but we can go further. Since the automaton
is used to classify the stacks of a failing parser, it only needs to handle viable
stacks, not arbitrary sentences in S∗. We condition the construction to only
explore the states reachable from the initial state via viable stacks.

3. Register allocation and dead code elimination. A state of the determinised
automaton is a sequence of continuations and a naive interpreter reaching this
state has to maintain a separate variable mapping for each continuation. We
can show that some continuations never succeed, while for those that succeed,
the different variables are often bound to the same value and do not need to
be stored separately. Using data flow analyses, we drop variables belonging to
dead continuations, group variables guaranteed to be equal, and compute the
minimal storage needed by an optimised interpreter.

4. Minimisation. The deterministic automaton that we get after all these steps
often contains redundant parts—distinct states that always perform the same
sequence of observable actions; those can be merged to obtain a more com-
pact automaton.

5. Code generation. The final step is to turn the automaton into a small pro-
gram. Transitions are stored in a sparse table and the actions are described
in a simple imperative language.
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With the exception of the exploration step, this is a standard pipeline for high-
performance lexer generators. Borsotti and Trafimovich (2022) explains the TDFA
construction, a flavour of automaton which also features variable bindings and dis-
ambiguation, that powers the RE2C lexer generator. Their starting point is a non-
deterministic automaton called “TNFA” built using Thompson-like constructions. It
is comparable to our interpretation of dC as the transition function of an NFA. They
determinise it and go into the details involved in optimising the automaton and gen-
erating high-performance code.

Our focus is not the performance of the generated code but its size. The inter-
mediate automata produced from non-trivial LRGrep expressions tend to be bigger
than those produced from lexer specifications, so it was important for us to manage
the size by tweaking some optimisations. For instance, on our error specification for
the OCaml grammar, the data flow analyses made the automaton more compress-
ible by a factor of 2 to 3. The code generation part is also not designed to produce the
highest-performing code, but to represent the automaton using a simple and com-
pact bytecode easy to integrate with an OCaml program.

While our goals differ, the pipelines are very similar with slightly different choices
made in the different steps.

4.1 Determinisation

Before introducing our solution, let us look at how the subset construction works and
the new challenges brought by disambiguation and variables.

From subsets to subsequences

In traditional finite automata theory, determinisation is achieved through the subset
construction. This construction tracks the states that are simultaneously reachable
when following transitions with the same label. Our extension of finite automata
affects the construction in two ways:

• Disambiguation rules impose an order over the different paths and sometimes
cause paths to abort.

• Variable bindings induce a finer relation between the states than mere reach-
ability: we do not just need to know that two states are simultaneously reach-
able, but also the different variables updated on the transitions reaching them.

The standard subset construction To simulate an NFA with states Q, for instance
to recognise a word abc, one can keep track of the set of simultaneously reachable
states and update them in lockstep, symbol by symbol. Starting from the singleton
made up of the initial state, all transitions labelled a are followed, reaching a new
set of states. The process repeats for the subsequent labels, b then c, following the

https://re2c.org/
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labelled transitions leaving each state reached in the previous step. Recognition suc-
ceeds if at least one active state is accepting at the end of the word1.

At each step, an active configuration is an element of P (Q). The essence of the
subset construction is that we can construct a deterministic automaton by repeating
this process for all transitions of all states, which is guaranteed to terminate since
P (Q) is finite.

Disambiguation using non-repeating sequences In our extension, the transitions
are ordered and we have to track the relative order of states, not just their reachability.
A configuration is now a sequence of NFA states without repetition. A deterministic
transition follows the transitions of each non-deterministic state while preserving
this order: the first element expands into a new sequence of states, obtained by fol-
lowing the transitions in order; the second element to a second sequence; and so on.
We collapse this sequence of sequences and remove the duplicates, keeping only the
first occurrence, to obtain a new sequence of unique NFA states.

We replaced the powerset with sequences without repetition, which is still a finite
set. As with the standard subset construction, we can close over all transitions to
produce a new DFA that now also preserves the relative order of NFA states.

Simulating NFAs with disambiguation and variables To implement variables, on
top of reachability and relative order, we want to keep track of a valuation ρ for each
active state k. ρ maps variables to input positions and is updated each time a trans-
ition is followed.

A configuration now tracks the active states as a sequence ~k, the current posi-
tion as an integer, and a valuation ρ for each active state, represented as a second
sequence ~ρ such that |~ρ| = |~k|. When following a transition labelled s, we update
the sequence of states as before, increment the current position, and take care of the
valuations as follows. A state k ′ is in the sequence of states expanded from state k be-
cause there is a non-deterministic transition (V ,k ′) labelled s leaving k. k ′ receives
a valuation ρ′ obtained by updating ρ with variables V to the current position. This
process expands the sequence of valuations into a sequence of sequences, mirroring
the treatment of active states. To keep it synchronised with the sequence of states,
we collapse it and remove the elements associated with the duplicate states that were
removed from the sequence of states.

Determinising NFAs with disambiguation and variables To determinise this NFA,
we proceed as before using sequences of states, but we also need to keep enough in-
formation to maintain the sequence of valuations during interpretation. A transition
labelled s of the determinised automaton relates two sequences of NFA states. Each
state k ′ in the target sequence comes from a non-deterministic transition (V ,k ′) of a
certain state k in the source sequence, and its valuation should be the valuation of

1This approach is at the core of an efficient non-deterministic recogniser by Rob Pike and reported
by Russ Cox as the “PikeVM” on https://swtch.com/~rsc/regexp/regexp2.html.

https://swtch.com/~rsc/regexp/regexp2.html
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k with variables V updated. To update the sequence of valuations, the deterministic
transition also has to provide the index of k, so that its valuation can be reused, and
the variables V to update.

We can finally define the DFA handling disambiguation and variable bindings: its
states are sequences of unique NFA states and its transitions relate a state and a label
to a target state and a sequence of indices and variables. This sequence has the same
length as the target state, and the indices are valid indices of the source state.

Formalising the solution

Provided a non-deterministic automaton on alphabet Σ with states Q and a trans-
ition function d : Q×Σ→P (Q), determinising it with the subset construction can be
seen as lifting d to d ′ : P (Q)×Σ→ P (Q), the transition function of a deterministic
automaton with states P (Q).

d ′(Q ′, s) is obtained by applying d(−, s) on each element q ′ ∈Q ′, yielding a set in
P (P (Q)) which is then flattened:

d ′(Q ′, s) = ⋃
q ′∈Q ′

d(q ′, s)

This amounts to tracking all the NFA states that are simultaneously reachable.
In LRGrep’s setting, the procedure is essentially the same—lifting to a richer do-

main by deriving pointwise, then flattening to recover an image in the same domain.
But directly flattening would lose too much information.

The non-deterministic transitions are given by:

dC : K ×S → (P (Var)×K )∗

Rather than lifting to a set, we lift to a sequence of sequences, still paired with vari-
able updates, which we flatten and de-duplicate while remembering the index of
source continuations:

K ×S → (P (Var)×K )∗

⇓ – lift to a sequence of sequences
K ∗×S → (P (Var)×K )∗∗

⇓ – flatten and index
K ∗×S → (N×P (Var)×K )∗

Definition 13 (Determinised derivative) The dC derivative is made deterministic by
lifting it to sequences and flattening while preserving source indices:

d ′
C : K ∗×S → (N×P (Var)×K )∗

〈k0 . . .kn−1, s〉 7→ ⊙
0≤i<n

[
(i ,V ,k ′)

∣∣ (V ,k ′) ∈ dC (ki , s)
]

We name the three projections of images of dC :

dest = map π3 ·d ′
C : K ∗×S → K ∗

vars = map π2 ·d ′
C : K ∗×S → P (Var)∗

origin = map π1 ·d ′
C : K ∗×S → N∗
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They represent the destination of a transition, the variables updated along it and the
indices of the source continuation from which each continuation of the destination
originated.

In the definition of d ′
C , the comprehension written with square brackets [. . .] ap-

plies to a sequence and should be understood as preserving order:

• Each continuation ki is derived, and its index is prepended to the elements of
the sequence dC (ki , s).

• The sequence of sequences is collapsed and normalised using a variant of the
normalising concatenation ¯, which we introduce below. The normalisation
process ensures that continuations are unique—a continuation appears at most
once in the resulting sequence—which is necessary for the procedure to ter-
minate.

The three projections describe the transitions of a deterministic automaton and the
auxiliary information associated with them. Since the automaton is deterministic, a
transition is described by a source state~k and a label s. If~k ′ = dest(~k, s), then:

• ~k ′ is the target state of transition (~k, s)

• vars(~k, s) lists the variables to update for each continuation of~k ′

• origin(~k, s) is a vector such that origin(~k, s) j = i when~k ′
j is derived from~ki

Normalising indexed transitions Normalisation proceeds as in 3.3.3 but working
on triplets (i ,V ,k) this time. We use κ,κ′ for a sequence of those triplets:

κ¯κ′ = κ ·prune(κ′)

where:

prune((i ,V ,k) ·κ′) =


ϵ when ∃ j , i ′,V ′, κ j = (i ′,V ′,■)

prune(κ′) when ∃ j , i ′,V ′, κ j = (i ′,V ′,k)

(i ,V ,k) ·prune(κ′) otherwise

prune(ϵ) = ϵ

Recognising multiple expressions

To recognise a single expression e, we can now construct a deterministic automaton
starting from the initial state ä•e and closing over the transitions described by dest.

In practice, it is desirable to build automata that recognise more than one expres-
sion. In the opening example, we wanted to recognise two expressions. As pseudo-
code:
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if stack matches /I -> . i then
report "Expecting a number"

else if stack matches [E/I->(E.)] then
report "Expecting a closing parenthesis"

Rather than testing for both expressions separately with two independent automata,
we can generate a single automaton that matches for both at the same time and out-
puts the index of the one that succeeded.

We achieve this by generalising the continuations ä and ■ to a family äi and ■i

indexed by i ∈ N. Derivation is such that dC (äi , s) = (;,■i ). All ■i are accepting
states and normalisation cuts sequences at the first continuation ■i for some i .

k ∈ K ::= . . . | äi | ■i i ∈N

To recognise a vector of expressions e0 . . .en−1, we start the determinisation proced-
ure from state (ä0 •e0) · . . . · (än−1 •en−1).

Related work

To our knowledge, this is the first presentation of deterministic disambiguation as a
reformulation of the subset construction on sequences of unique elements.

The determinisation of TNFA in Trofimovich (2019), and Borsotti and Trafimovich
(2022) is very close in essence. They use strict weak orderings rather than non-
repeating sequences. Strict weak orderings give more degrees of freedom by allowing
states and transitions to be partially ordered. We could achieve this in our framework
by changing the representation of states from the non-repeating subset of K ∗ to the
subset of P (K )∗/{;} where a continuation appears at most once. Continuations that
belong to the same set are not ordered. Rather than reframing the subset construc-
tion on strict weak orderings, they directly give an algorithm to construct strict weak
orderings while closing over transitions.

They implement two disambiguation strategies with this representation: left-
most, a variant of ours, and the more challenging POSIX strategy. We did not study
whether POSIX could be reframed in our setting. Since we are only interested in
leftmost-like disambiguation strategies, it is not clear whether their approach would
be beneficial. There are fewer non-repeating sequences than strict weak orderings2,
so in the worst case our determinised automaton would be smaller (still exponen-
tial) but their approach might visit fewer states in practice. Picking the best solution
would require more experimentation.

Another branch of research explores the problem of full parsing for regular ex-
pressions, which constructs a parse tree rather than a valuation. Parsing offers more
flexibility but is less performant and can require multiple passes over the input.

To recognise a single expression e, we can now construct a deterministic auto-
maton starting from ä•e and closing over the transitions described by dest.

2The number of strict weak orderings on n elements is the nth ordered Bell number
n∑

i=0

{
n
i

}
i !.

The number of non-repeating sequences of n elements is given by
n∑

i=0

(
n
i

)
i !.

https://en.wikipedia.org/wiki/Weak_ordering
https://en.wikipedia.org/wiki/Ordered_Bell_number
https://oeis.org/A000522
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4.2 Exploration

From the initial state q0 = (ä0 •e0) · . . . · (än−1 •en−1) and the transition function dest,
it is easy to construct an automaton M = (Q,S,d , q0,F ), such that:

• Its states are the subset Q of K ∗ reachable by following transitions from q0.

• Its alphabet is the set of LR states.

• Its transition function is dest; as defined, the function is total and ϵ acts as a
sink state.

• Its initial state is q0 ∈Q.

• A state is accepting if it contains an accepting continuation:

F = {
q ∈Q

∣∣ ∃i , j , qi =■ j
}

Formally, Q can be constructed iteratively, starting from the singleton
{

q0
}

and
growing it with the states reachable by following one transition:

• Q0 = {q0}

• Qi+1 =Qi ∪ ⋃
q∈Qi ,s∈S

dest(q, s)

The sequence reaches a fixed point such that ∃ j ,Q j+1 =Q j and we pose Q =Q j .
Informally, the existence of a fixed point follows from Antimirov’s derivative having
finite derivatives, a property preserved by our extensions:

• The reduction continuations are represented as pairs of sets of states of the
reduction automaton, so they are finite by construction.

• The second extension is the replacement of the set of continuations with the
set of non-repeating sequences. The set of non-repeating sequences of a finite
set is bigger than the power set but remains finite.

Thus, we obtain a finite automaton with states Q recognising the initial vector of
expressions. In practice, however, this automaton is often impractically large. Fortu-
nately, we can do better: it classifies all elements of S∗ while we are only interested
in recognising LR stacks. We leverage this to significantly prune the automaton.

4.2.1 The subset reached by viable stacks

The automaton we are looking for is the subset of M that behaves the same as M on
the stacks of an LR parser. In Section 2.3.1, we observed that the viable stacks are an
approximation of these stacks that can be enumerated from right-to-left by starting
from each state and iterating the pred function.

To properly classify the errors, LRGrep also requires that no reduction has been
applied on a stack since the last shift transition. In such a stack, the last transition
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cannot be a goto transition and we can further restrict the enumeration by start-
ing from states whose incoming transitions are not goto transitions. We call these
the wait states because they are states in which the LR parser waits for the lexer to
provide a new input symbol before taking any action3.

Definition 14 (Wait states) A wait state is either the initial state or the target of a shift
transition. We define the set of wait states Wait ⊆ S as:

Wait = {s0}∪{
s ∈ S

∣∣incoming(s) ∈ T
}

We can refine M by computing the subset of states and transitions that are reach-
able from the stacks ending in a wait state. This construction coincides with an im-
plication rather than an intersection. If ~s is a viable stack, the refined automaton
applied to~s should behave like M ; if it is not a viable stack, any behaviour is accept-
able. With an intersection, non-viable stacks would be systematically rejected. For
two automata A and B on an alphabet Σ, the intersection A∩B can grow to a size up
to |A|×|B | states, while implication permits decreasing the size of the automaton. At
worst, B itself is a valid approximation of A =⇒ B .

Implication is just an optimisation, but a significant one in this domain. In par-
ticular, to recognise an occurrence of the reduction operator, the unrestricted defin-
ition leads to simulating all sequences of reductions permitted by the grammar and
eventually reaching the target. When restricted to viable stacks, only the reductions
applicable to the local context are simulated.

The implied automaton We represent the result of the implication with a partial
function Dom : Q * P (S) characterising the reachable subset of M . The reachable
states are given by dom(Dom) and (the labels of) the reachable transitions of a state
q ∈ dom(Dom) by Dom(q).

We start by considering the graph whose nodes are LR states S with edges s
s−→ s′

for s′ ∈ pred(s). The paths leaving an LR state s ∈ S in this graph enumerate the
suffixes of viable stacks whose top state is s. To construct Dom, we rely on the dual
use of LR states in this graph. A state s is both a node from which we enumerate
suffixes and the label of all edges leaving this node.

From this, we deduce the constraints characterising Dom:

• The initial state is reachable and recognises the Wait LR states:

q0 ∈ dom(Dom)
Wait ⊆ Dom(q0)

• Dom is closed for reachable transitions of reachable states. For q, q ′ ∈Q, s ∈ S:

q ∈ dom(Dom)∧ s ∈ Dom(q)∧q ′ ∈ ||dest(q, s)||
=⇒

q ′ ∈ dom(Dom)∧pred(s) ⊆ Dom(q ′)
3An exception to this rule is the eager execution of default reductions by Yacc. Integrating LRGrep

requires some adaptations, see 9.5.
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Taking Dom to be the least solution to these equations, we construct the determ-
inistic automaton N = (Q ′,S,dest′, q0,F ′) as the subset of M that we determined to
be reachable by viable stacks, where:

Q ′ = dom(Dom)
dest′(q, s) = dest(q, s) when s ∈ Dom(q)

F ′ = F ∩Q ′

4.2.2 Implication on automata

In this subsection, we explore the notion of implication on automata, closely connec-
ted to the recently introduced schema-based determinization Niehren et al. (2022).
This method simultaneously computes both the implication and the determiniza-
tion of a DFA and an NFA. For explanatory purposes, we describe the implication of
two NFAs as a more fundamental operation. We hope to give some intuition on im-
plication and how it relates to intersection by generalising the solution we have just
established for LRGrep to arbitrary automata.

The intersection A ∩B of two non-deterministic automata A = (S A,Σ,dA, i A,FA)
and B = (SB ,Σ,dB , iB ,FB ) is another automaton defined as:

A∩B = (S A ×SB ,Σ,dA∩B , (i A, iB ),FA ×FB )
dA∩B ((qa , qb), s) = dA(qa , s)×dB (qb , s).

Let us write s
w−→ s′ when state s′ is reachable from s by following transitions la-

belled w ∈Σ∗. In the intersection automaton, (ia , ib)
w−→ (qa , qb) if and only if ia

w−→ qa

and ib
w−→ qb . If qa and qb are final states, then w is recognised by A, B , and also by

A∩B . More generally, we have w ∈L (A∩B) ⇐⇒ w ∈L (A)∩L (B).
Like for the subset construction, the intersection automaton benefits from trim-

ming. Some states might be unreachable from the initial state, or some states might
not be able to reach any final state, thus not contributing any word to the recog-
nised language. We write A∩T B for the trimmed intersection automaton, and S A∩T B ,
dA∩T B and FA∩T B for the states, transition function and final states of the trimmed
intersection automaton.

The implication is characterised by the weaker equation w ∈ L (A) =⇒ (w ∈
L (A =⇒ B) ⇔ w ∈ L (B)). If w ∉ L (A), the behaviour is undefined so A =⇒ B is
not unique, but we are looking for the smallest subset of B satisfying the equation.

A suitable automaton A =⇒ B is the quotient of A ∩T B obtained by projecting
on states of B :

S A =⇒ B = {
qb | (qa , qb) ∈ S A∩T B

}
dA =⇒ B (qb , a) = {

q ′
b | ∃qa , (q ′

a , q ′
b) ∈ dA∩T B (qa , a)

}
FA =⇒ B = {

qb | (qa , qb) ∈ FA∩T B

}
The trimmed intersection automaton tracks the configurations of A and B reach-
able from the initial state. By projecting on B , the implication automaton tracks the
configurations of B reachable from the initial state by an input reaching at least one
configuration of A.
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Construction of the Implication We can directly construct the relevant subset of B
via a function D : SB →P (S A), such that for all sa , sb :

sa ∈ D(sb) ⇐⇒ ∃w, iB
w−→ sb ∧ i A

w−→ sa

It is the least function such that:

• i A ∈ D(iB ), the empty input reaches both initial states.

• D is closed by reachable transitions of reachable states. For all sa , sb and x ∈Σ:

sa ∈ D(sb) =⇒ ∀s′b ∈ dB (sb , x),dA(sa , x) ⊆ D(s′b)

The implication automaton is then given by:

S A =⇒ B = { qb ∈ SB | D(qb) 6= ; }
dA =⇒ B (qb , x) = { q ′

b ∈ dB (qb , x) | ∃qa ∈ D(qb), q ′
a ∈ D(q ′

b), q ′
a ∈ dA(qa , x) }

FA =⇒ B = { qb ∈ FB | D(qb)∩FA 6= ; }

Constructing D is a bit more complex than Dom because we don’t have the double
vision offered by viable stacks—a state of S A is not a label in Σ. We track the reach-
able states and then visit the transitions by quantifying over the alphabet, but the
definition is otherwise similar.

Implication and Minimality This construction implements A =⇒ B but is in gen-
eral not minimal. First, there might be dead states from which no accepting state
is reachable. If those dead states are removed and B is deterministic, then we get
the smallest subset of B compatible with A =⇒ B . In the general case, the auto-
maton constructed for A =⇒ B might be minimisable even if B was minimal to be-
gin with. Minimisation of a non-deterministic automaton is decidable, even though
computationally hard (Kameda and Weiner, 1970). But even after minimisation, the
automaton might not be the minimal automaton recognising L (A =⇒ B) because
minimisation preserves the exact behaviour of the automaton. A minimisation al-
gorithm merges states with indistinguishable behaviours. Two states are not merged
if they are reachable by some prefixes and there exist suffixes on which they behave
differently. But if those prefixes and suffixes do not belong in L (A), implication does
not require the behaviours to be preserved, which could be exploited for more ag-
gressive merging. We do not know if minimisation under those constraints has been
studied.

4.3 Two Levels of Detail

Let us go back to the determinised and pruned automaton N . Before processing it
further, we want to point out that it can be read at two levels. The usual reading is at
the level of states and transitions, where a transition is a directed edge between two
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states labelled with an LR(1) state. We write q
s−→ q ′ for an edge from q to q ′ labelled

s; since the automaton is deterministic, a transition is uniquely identified by q and s,
and the target state is given by the transition function dest′ such that dest′(q, s) = q ′.

The second level is made of continuations and maps between continuations. A
state is a sequence of continuations, and a transition between two states relates each
continuation in the target state to the continuation in the source state it derives from.
A transition also defines a set of variables to update for each target continuation.
For an edge q

s−→ q ′, a continuation in q maps to zero, one or more continuations of
q ′ and, conversely, a continuation in q ′ comes from exactly one continuation in q .
The mapping between continuations is given by origin(q, s)i = j , meaning that q ′

i
is derived from q j . The set of variables to update for this continuation is given by
vars(q, s)i .

4.4 Register Allocation

The representation of variables used so far is not suitable for an efficient imple-
mentation. We know which variables to update, but we can’t tell which variables
are already defined at any given point. A simple interpreter could manage this by
maintaining and updating dynamic maps from variable names to values. Since vari-
ables are local to a continuation, each continuation should have its own map. When
following a transition q

s−→ q ′, origin(q, s) tells which maps should be inherited and
vars(q, s) tells which variables to update. But this approach leads to a lot of wasteful
computations. In particular, variable updates tend to be fairly rare, so many continu-
ations have the same bindings.

An efficient implementation can statically determine the number of unique vari-
ables and pre-allocate the storage. We solve these problems by analysing the data
flow of the automaton. Data-flow analysis was originally introduced to analyse and
optimise control flow graphs (Kildall, 1973), which are more general than the auto-
maton we are working on. A data-flow analysis can establish global properties of the
automaton by propagating local information along the transitions until reaching a
fixed point. We run two analyses:

• One to determine which variables are live in each state. That is, the variables
whose value is guaranteed to be used4 on at least one path leaving this state.

• One to group variables guaranteed to have the same (or no) value. Variables
statically known to be equal can share the same storage, or none at all if they
have no value.

Definition 15 (Variables assigned by a transition) assigned(q, s) is the set of the vari-
ables defined by the outgoing transition of state q labelled s, together with the index of
the continuation for which they are defined.

assigned(q, s) = {
(i , v)

∣∣∀i ,0 ≤ i < |q|, v ∈ vars(q, s)i
}

4On arbitrary control flow graphs, it is undecidable whether a variable will be used, so live variables
are an over-approximation. In our restricted formalism, we can compute an exact solution.
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In this section, we often use pairs (i , v) for the occurrence of variable v in the i th
continuation.

4.4.1 Live variables

In the end, variables are used by accepting continuations ■i . If a variable n is bound
in expression ei , it is when reaching the continuation ■i that the values associated
to ns and ne are looked up. Therefore, our analysis starts from the accepting con-
tinuations and propagates backward, following transitions to the predecessors, until
crossing transitions assigning the variables.

To define the variables used by an accepting continuation, we first need to know
all variables bound in the initial expressions. The set of bound variables of an expres-
sion is defined by induction on its structure:

bv(ϵ) = ;
bv(x) = ;

bv(n = e) = {ns ,ne }∪bv(e)
bv(e1 ·e2) = bv(e1)∪bv(e2)
bv(e1|e2) = bv(e1)∪bv(e2)

bv(e∗) = bv(e)
bv(/A →α ·β) = ;

bv([e ]) = ;
bv collects all occurrences of variable binding constructions n = e. Note that for

the reduction operator [e], the sub-expression is ignored: bindings are not allowed
under a reduction.

Definition 16 (Live variables) The live variables of state q, written live(q), are the
least solution to equation:

live(q) = immediate(q)∪ successors(q)

where:

immediate(q) = {
(i , v)

∣∣ qi =■ j , v ∈ bv(e j )
}

successors(q) = ⋃
q

s−→q ′
rename(q, s, live(q ′))/assigned(q, s)

rename(q, s,V ) = {
(origin(q, s)i , v)

∣∣ (i , v) ∈V
}

A variable is live if it is used by a continuation ■i or if it is live in a successor and
not assigned by the transition leading to this successor. An accepting continuation
■i uses all variables in bv(ei ). If a variable live in a successor is assigned on the
transition to the successor, then the successor uses this new definition and the use is
not propagated further. Since a variable is tagged by the index i of the continuation
in which it is live, it is renamed during propagation from i to origin(q, s)i .

Finally, we say that a variable is defined in state q if it is live and assigned on at
least one path reaching the state. We write defined(q) for the set of defined variables.
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Definition 17 (Defined variables of a state) defined(q) is the least solution to equa-
tion:

defined(q) = ⋃
q ′ s−→q

{
(i , v) ∈ live(q)

∣∣(i , v) ∈ assigned(q ′, s)∨ (origin(q ′, s)i , v) ∈ defined(q ′)
}

Operationally, the variables in defined(q) are those that need storage space when
reaching state q : they will be used in the future and might have already been assigned
some value.

4.4.2 Variable classes

To save storage space, we want to group the defined variables that are known to be
equal. We do this using, for each state q , an equivalence relation ≡q on variables
in defined(q) such that two variables (i , v) and ( j , w) are in the same class if, on
every paths reaching q , they are either both unassigned or both assigned by the same
transition.

Definition 18 (Variable equivalence) Given a state q and (i , v), ( j , w) ∈ defined(q),
(i , v) ≡q ( j , w) iff for each transition q ′ s−→ q:

• either
{
(i , v), ( j , w)

}⊆ assigned(q ′, s)

• or
{
(i , v), ( j , w)

}∩assigned(q ′, s) =;∧ (origin(q ′, s)i , v) ≡q ′ (origin(q ′, s) j , w)

Two defined variables are equivalent in a state q if and only if they are equivalent
on every incoming transition q ′ s−→ q . Two variables are equivalent on an incoming
transition if they are both assigned on this transition, or, if they are not assigned, if
they are equivalent in the source state of the transition.

Definition 19 (Variable classes) We write classes(q) = defined(q)/≡q for the set of
defined variables quotiented by variable equivalence.

We see the classes as a set of sets. For instance if classes(q) = {(1, v), (2, v)}, {(3, v)}},
the state has three defined variables named v and belonging to different continu-
ations. The first two are always equal—they alias each other. The third v can differ.

This is both a data flow and a partition refinement problem. The solution can be
computed by specialised algorithms such as those of Paige and Tarjan (1987) but we
found that a naive iterative approach is sufficient. Intuitively, we have one partition
per state and there are many states, but the domain of each partition, defined(q), is
small and the iteration converges quickly.



CHAPTER 4. COMPILATION TO MATCHING AUTOMATA 88

4.4.3 Register allocation & transfers

The number of classes in classes(q) tells us how much storage is needed at run time
when the state is reached. A state with two classes, say {{(1, v), (2, v)}, {(3, v)}}, needs
two registers. The number of registers needed to run the automaton is the number
of classes of the largest partition: max

q∈Q
(|classes(q)|).

Register allocation attributes each class of a state to a register via register map-
ping. When a transition is followed, certain registers can be set to the current pos-
ition and other registers might need to be remapped to match the mapping of the
target state. We represent this by a transfer function.

Register allocation To allocate registers, we choose an arbitrary total ordering over
sets of variables and number each class of a state according to its position in the or-
dering. For instance in the partition above, if according to the ordering {(1, v), (2, v)} <
{(3, v)}, then class {(1, v), (2, v)} is attributed register 0 and class {(3, v)} is attributed
register 1.

Definition 20 (Register mapping) Given a state q, the register function is the bijec-
tion between classes(q) and the interval [0; |classes(q)|[ that preserves the ordering.
For the inverse, we write register−1(classes(q), i ) ∈ classes(q) for i ∈ [0; |classes(q)|[.

This very naive ordering completely ignores the data flow of the automaton and
is likely to generate a lot of trivial register transfers. This would be a problem for a
traditional compiler, but it offers more opportunities for automaton minimisation.
Minimisation makes the automaton more compact by merging states that have the
same observable behaviour (states that recognise the same inputs and generate the
same register transfers). If the register allocation accounted for the flow coming from
predecessors, it is more likely that two otherwise equivalent states would be given
different register mappings. Compacting the automaton matters more than decreas-
ing the number of register transfer and we found this naive solution to be sufficient
in practice.

Variables transfer Knowing the variable classes of each state and where they are
stored, we can determine how the storage space should be updated when following
a transition.

For each transition q ′ s−→ q , we represent this by a function:

transfer(q ′ s−→ q) : [0; |classes(q)|[→ [0; |classes(q ′)|[∪{>,⊥}

transfer(q ′ s−→ q)(i ) determines how the register i should be updated when the trans-
ition is followed. A register of the target state maps to three possibilities:

• a register of the source state; this case corresponds to a copy.

• the symbol >; this case corresponds to setting the register to the current input
position.
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• the symbol ⊥; this case gives the special value ⊥ to the register, representing
an unassigned variable.

Definition 21 (transfer function) The transfer function is defined as follows:

transfer(q ′ s−→ q)(i )=


> if (i , v) ∈ assigned(q ′, s)

register(c ′) when c ′ ∈ classes(q ′) and (origin(q ′, s)i , v) ∈ c ′

⊥ otherwise

where (i , v) ∈ register−1(i )

The transfer action for register i depends on register−1(i ), the class stored in the re-
gister. The equivalence relation ensures that all variables of the class are treated the
same, so we pick an arbitrary variable (i , v) of the class to discuss the possibilities. If
the variable is assigned by the transition, the register should be set to the current po-
sition, represented by >. If the variable is imported from a predecessor, the contents
of its register should be copied. Otherwise, the variable is unassigned and marked ⊥.

The ⊥ case handles transitions reaching a joint-point where a variable is defined
in some but not all branches. Consider a trivial automaton with initial state q0 and

two transitions q0
s1,{v}−−−→■ and q0

s2,;−−−→■. ■ is reachable by reading s1 or s2, but the
variable v is set only when reading s1. defined(q0) is empty since no variable has

been set yet, and defined(■) is {v}. The transfer function for q0
s1−→■ is v 7→ > since

the variable is assigned by the transition but for q0
s2−→■ it is v 7→⊥.

Together, register and transfer enable a representation that is suitable for an ef-
ficient implementation of recognition:

• registers are small numbers that can be interpreted as indices in an array

• transfers and assignments are trivial operations (permutations and updates of
array cells)

We define an extra helper to find the register in which a variable is stored.

Definition 22 find-register(q, i , v) finds the register in which the variable v of the
continuation qi of state q is stored, as an integer in [0;classes(q)[, or ⊥ if it is not
defined in this state:

find-register(q, i , v) =
{

register(c) when (i , v) ∈ c and c ∈ classes(q)

⊥ otherwise

As with transfer, ⊥ is used to signal that a value is missing for v .

4.5 Minimisation

For each deterministic automaton, there exists a unique and minimal deterministic
automaton that recognises the same language (Hopcroft et al., 2000). This is done (1)



CHAPTER 4. COMPILATION TO MATCHING AUTOMATA 90

by removing states that are not reachable from the initial state, (2) by removing dead
states, from which no accepting state is reachable, and (3) by merging indistinguish-
able states (states that recognise the same language; in our case, they must also lead
to the same register transfers and accepting continuations).

The procedure we used to generate the automaton produces only reachable states,
but it often leads to dead and indistinguishable states, so it is worth post-processing
the automaton with a minimisation algorithm.

Note that while minimisation is well-defined given a deterministic automaton
and a fixed alphabet, in our case some arbitrary choices already affected the defin-
ition of the automaton and the alphabet. In particular, three factors of our genera-
tion procedure affect the effectiveness of the minimisation procedure on the auto-
maton: the use of wildcards in the derivation of reductions (Section 2.4.1), the ex-
ploration conditioned by viable stacks (Section 4.2), and the register allocation and
transfer functions (Section 4.4.3). Assuming these are fixed, the minimisation pro-
cedure yields a minimal automaton, but it might be possible to produce a smaller
automaton by making different choices.

With these precautions in mind, we can apply a standard, off-the-shelf, minim-
isation procedure. We experimented successfully with Valmari’s variant of Hopcroft’s
algorithm (Hopcroft, 1971; Valmari, 2012). These algorithms work by maintaining a
partition which keeps indistinguishable states in the same class. The initial partition
is a coarse over-approximation (with distinguishable states in the same class), that is
progressively refined until all distinguishable states are separated. Jacobs and Wiss-
mann (2022) take a modern look at the problem and give a high-level description
that leads to a fast and generic algorithm.

Minimising the extended DFA The characteristics of our automaton necessitate
modifications to the standard approaches to achieve correct and optimal results:

• The initial partition is refined to distinguish the different accepting states, based
on their accepting continuation and the mapping of registers used by the ac-
cepting continuation.

• The alphabet is extended to also include the transfer functions, since two trans-
itions q1

s−→ q2 and q3
s−→ q4 can be distinguished if the functions transfer(q1

s−→
q2) and transfer(q3

s−→ q4) differ, even though they are both labelled s

That is, for a transition q
s−→ q ′, the label is taken to be (s,transfer(q

s−→ q ′)) and not
simply s. The initial partition is the coarsest partition such that:

• states without an accepting continuation (Ø(i , j ), qi =■ j ) are in the same class

• two states q and q ′ such that ∃i , i ′,k, qi = q ′
i ′ = ■k are in the same class iff

∀v ∈ bv(e j ), find-register(q, i , v) = find-register(q ′, i ′, v).
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Output of minimisation Minimisation is an optimisation that is transparent to the
rest of the pipeline: it is not mandatory to minimise the automaton. But if one wants
to use it, a few definitions have to be adapted.

Let us write R and dR for the states and transition function of the minimised auto-
maton. We have that:

• a state r ∈ R is a set of equivalent states q ∈Q from the source automaton.

• transitions are labelled by pairs (s, f ) of an LR state and a transfer function.

A state r is accepting clause j if there exists q ∈ r such that qi =■ j . When this is
the case, we simply write ri =■ j and define find-register(r, i , v) = find-register(q, i , v).
The initial refinement used for minimisation guarantees that the partition of states
is compatible with these definitions.

We decompose the transitions into an input label and a separate transfer func-
tion. When dR (r, (s, f )) = r ′, we write r

s−→ r ′ and transfer(r
s−→ r ′) = f . The specifica-

tion of the minimisation problem guarantees that f is functionally determined by s
(there is no f ′ 6= f on which dR (r, (s, f ′)) is defined).

Finally, we need the Dom function. Dom(q) characterises the subset of S from
which transitions leaving q are reachable. A transition leaving r is reachable if it is
reachable from at least one state in the equivalence class:

Dom(r ) = ⋃
q∈r

Dom(q).

4.6 Code Generation

In this section, we convert an automaton into a program for a basic abstract ma-
chine, a format easy to interpret with or compile to general-purpose programming
languages.

Input Automaton We start from an automaton with a set of states Q recognising a
vector of expressions ei . We write ■i = q j if the j th continuation of state q accepts

clause i and q
s−→ q ′ for a transition from q to q ′ labelled by an LR state s ∈ S. We also

assume a few functions refining the behaviour of transitions:

• the register transfers for each transition are specified by a finite map
transfer(q

s−→ q ′) : [0;m[*N[0;n[∪ {>,⊥} for some m,n ∈N.

• Dom(q) ⊆ S specifies the reachable subset of outgoing transitions from q . This
is used to distinguish rejecting and undefined transitions. When in state q and
looking ahead at s, if there is no transition q

s−→ q ′, the default behaviour is
to reject the input. If s ∉ Dom(q), code generation knows that this situation
cannot happen with a valid input (an LR stack), and is free to choose a different
action.
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• find-register(q, i , v) ∈ N∪ {⊥} finds the register in which variable v of the i th
continuation of state q is stored, or ⊥ if the variable is not defined in q .

This automaton can be the unoptimised M we got after determinisation, its subset N
produced by exploring the viable stacks, or the result of the minimisation procedure.
To use M , Dom is taken to be _ 7→ S.

Actions A state q often has many transitions with the same transfer function and

target state. That is, if q
s−→ q ′, there are generally other s′ such that q

s′−→ q ′ and

transfer(q
s−→ q ′) = transfer(q

s′−→ q ′); we say that s and s′ have the same action.
We call these pairs of a transfer function and target state actions, and we write

a ∈ Actions =
{

(transfer(q
s−→ q ′), q ′)

∣∣∣ ∀q, q ′, s, q
s−→ q ′

}
.

Output Program The program consumes the input states of the LR stack one by
one and from right to left. When clause i is found to match with variables bound to
values ~v , it emits the pair (i ,~v). A single execution can produce zero, one or more
matches.

The program is made of two components:

• a map code : Q ∪Actions → Instruction∗ associating each state and action to a
sequence of instructions.

• a partial function table : Q ×S * Actions∪ { Halt } representing the transition
table.

The program starts by executing code(q0), the sub-program of the initial state.

4.6.1 Abstract Machine

The abstract machine contains a fixed number of registers, identified by an integer
from 0 to n, and tracks the position of the current input symbol. A symbol is a state
of the LR automaton, represented as a number. We write r1, r2, . . . for meta variables
ranging over registers. The value of a register is either a natural number, denoting a
position in the input, or a distinguished value ⊥ representing an unassigned variable.

Instructions

There are register and control instructions. Register instructions change the value of
a register, and execution moves to the next instruction in sequence. Control instruc-
tions can change the next instruction to execute.
The register manipulation instructions are:

• Store r1: save the current position in register r1

• Move r1, r2: set r1 to the value of r2
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• Clear r1: set r1 to ⊥
• Swap r1, r2: exchange the values of r1 and r2

The control instructions are:

• Goto q : move input to next symbol and move execution to the sub-program
associated with state q

• Match q : query the transition table at cell (q,current input symbol). If it is an
action a, execution continues with the sub-program associated with a. If it is
Halt, execution stops; if it is not defined, execution continues with the next
instruction in sequence.

• Accept c, r1|⊥, . . . ,rn|⊥: signals that clause number c succeeded with variables
bound to the values of registers r1 to rn, or ⊥ for variables that are statically
known to be unbound. c has to have arity n (i.e. |bv(ec )| = n). Execution con-
tinues with the next instruction. Multiple Accept instructions can be executed
if an input has multiple matches.

• Halt: stop execution.

4.6.2 Default Actions and Transition Table

To keep the code of an automaton compact, we want the transition table to be sparse;
defined on the smallest domain possible. In practice, the outgoing transitions from
a state often share the same actions, such that they can be grouped by identical be-
haviour. A standard solution to make the table sparse is to treat the most common
action separately and only store the transitions that differ from it (Aho et al., 1986).

Definition 23 (Default transitions) We write default(q) for a largest subset of Dom(q)
such that, for all s1, s2 ∈ default(q), either:

• both q
s1−→ q1 and q

s2−→ q2 are defined and they have the same action:

q1 = q2 ∧ transfer(q
s1−→ q1) = transfer(q

s2−→ q2)

• both are undefined

If multiple subsets of Dom(q) satisfy these conditions, an arbitrary one is chosen.

Definition 24 (Sparse transition table) The transition table is represented by a par-
tial function table : Q ×S * Actions∪ { Halt }.

It is defined on the pairs (q, s) where s ∈ Dom(q) and s ∉ default(q) by:

table(q, s) =
{

transfer(q
s−→ q ′), q ′) when q ′ = d ′(q, s) is defined

Halt otherwise
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4.6.3 Translation of transfer functions

A transfer function f : [0;dst[→ [0;src[∪ {>,⊥} shuffles, copies and updates certain
registers. After execution of the function, we want the first dst registers to evaluate
either to the value a register had before execution (if the image is an integer), to store
the current position (if the image is >) or to be cleared (if the image is ⊥). To translate
it into a sequence of primitive register instructions, we have to carefully order the
operations to avoid overwriting the value of a register that is later needed.

This is an instance of the well-studied parallel move problem. We give a simple,
greedy solution as pseudo-code in appendix A and refer the reader to Rideau et al.
(2008) for an optimal solution (using an auxiliary register instead of Swap instruc-
tions).

4.6.4 Translation of states and actions

We can now define the sub-programs for each state and action. For an action ( f , q),
we emit the instructions for the transfer function f followed by Goto q .

For a state q , we start by handling accepting continuations. For each i , j such
that qi =■ j , we emit Accept j,~r . The vector~r gives values to the variables of clause
j . Let ~v be a vector of the variables bv(e j ) with an arbitrary ordering (i.e. for each
v ∈ bv(e j ),∃!k,~vk = v). Then~rk = find-register(q, i ,~vk ).

After that, we emit Match q to look up the transitions for state q , followed by
the code for the action of the default group default(q). We pick an arbitrary s ∈
default(q) and:

• if q
s−→ q ′ is defined, we emit the code for the transfer function transfer(q

s−→ q ′)
followed by Goto q ′.

• if q
s−→ q ′ is not defined, we emit Halt.

4.6.5 Representing a sparse transition table

table is a partial function with a limited domain. Efficient representation of these
functions has been the subject of various studies. The Dragon Book (Aho et al., 1986)
cites a simple solution in O(n2), where n is the size of the domain, for lexer generators
that works well in practice.

LRGrep uses this solution. It has been sufficient so far; however, we have ob-
served it becoming a bottleneck when scaling to larger specifications. In our tests,
a rule with around one thousand clauses translated into around 106 transitions and
packing the transition table was the slowest part of the pipeline, taking a few seconds.

We are looking to replace this algorithm in the future. The problem is studied by
Tarjan and Yao (1979) who offer a more involved solution with strong guarantees.
Driesen (1999) compares common solutions to the problem of efficient dynamic
dispatch in object-oriented programming languages; this turns out to be the same
problem, replacing transitions indexed by a state and symbol with method imple-
mentations indexed by a class and a method name.
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4.7 Conclusion

In this chapter, we started from a derivative operator dC for our dialect of regular
expressions and constructed an efficient deterministic automaton. In Section 4.1,
we adapted the subset construction to obtain a determinisation procedure that is
compatible with the rules for disambiguation and variable captures, resulting in a
deterministic transition function dest.

We observed that the automaton obtained by following all derivatives from an
initial state is unnecessarily large since it classifies all inputs in S∗, while we are only
interested in classifying the stacks reachable by an LR parser. Section 4.2 introduced
the notion of automaton implication to characterise the relevant subset of the auto-
maton and restricted the transition function to d ′, which still correctly classifies the
LR stacks and yet leads to a smaller automaton.

To implement variable captures efficiently, in Section 4.4.3 we applied data flow
analyses on the smaller automaton to store variable values in a minimum number of
registers and determined the registers to transfer or update for each transition.

This results in a deterministic automaton whose transitions are given by dest′

and labelled by register transfer functions. This automaton can be further minim-
ised by adapting standard techniques (Section 4.5).

Finally, Section 4.6 suggests a simple abstract machine and a translation scheme
to represent the automaton as a program.



Chapter 5

Fast reachability analysis for LR(1)
Parsers

This chapter is self-contained and has been published separately in Bour and Pottier
(2021). The results presented here are re-used in Chapter 6.

5.1 Introduction

The Reachability Problem An LR(1) automaton is a state machine equipped with
a stack, which stores a sequence of past states. The state found at the top of the stack
is the current state. At each step, the automaton’s action is determined by its current
state and the lookahead symbol, that is, the first unconsumed input symbol. The
automaton’s palette of actions includes consuming the first input symbol, following
a transition to a new state (which is then pushed onto the stack), and popping a
number of states off the stack (thus changing the current state).

A pair of a state s and a symbol z is reachable if there exists an input sentence
that leads the automaton from its initial configuration to a configuration where the
current state is s and the current lookahead symbol is z. In its simplest form, the
reachability problem can be formulated as follows:

Given: a state s; a terminal symbol z.
Find: whether (s, z) is reachable.

The problem can also be stated in a more elaborate form as follows:

Given: a state s; a transition tr that leaves the state s; two terminal symbols a
and z.
Find: whether there exists a sentence w such that:

• the first symbol of w z is a, and

• whenever the automaton is in state s and its input begins with w z, the
automaton consumes w , leaves z unconsumed, and takes the trans-
ition tr.

In short, the second problem asks under what conditions each transition can be
taken. A solution of this problem yields a solution of the first problem. Indeed, a

96
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solution of the second problem allows constructing a directed graph G , whose ver-
tices are pairs (s, z), such that the first problem boils down to ordinary reachability in
the graph G . The role played by the terminal symbol a may not be clear to the reader
at this point; we return to it in §5.3.

By an “LR(1) automaton”, we mean a state machine equipped with a stack and
that can peek at the first unconsumed input symbol. There are many methods for
constructing such an automaton, including Knuth’s canonical method (Knuth, 1965),
SLR (DeRemer, 1971), LALR (DeRemer and Pennello, 1982; DeRemer, 1969), Pager’s
method (Pager, 1977), and IELR(1) (Denny and Malloy, 2010). Furthermore, this
construction process can be influenced by user-provided precedence declarations,
which indicate how shift/reduce and reduce/reduce conflicts must be resolved. Be-
cause we state the reachability problem in terms of the automaton, not in terms of
a grammar, we do not care how the automaton is constructed. Our reachability al-
gorithm is compatible with all of the construction methods cited above.

Applications Solving the reachability problem can be useful in a range of situations.
One simple application is error diagnosis, that is, producing a diagnostic message
when a syntax error is encountered. Jeffery (2003) suggests producing a message
based solely on the current state of the automaton while disregarding its stack. This
is done by setting up in advance a mapping of states to messages. Because state
numbers are opaque and brittle, the user is in fact expected to set up a mapping
of erroneous input sentences to messages. Pottier (2016) notes that this table must
be correct (every sentence is erroneous), irredundant (no two sentences lead to the
same state), and complete (every state where an error can be triggered corresponds
to some sentence). While correctness and irredundancy are easy to enforce, com-
pleteness is a more challenging property. Constructing a complete collection of er-
roneous input sentences or just checking that a collection of erroneous input sen-
tences is complete requires the ability to compute the reachable error states, that is,
to determine which states s are such that some input sentence triggers an error in
state s. This requires solving the reachability problem.

Pottier (2016) proposes a reachability algorithm and implements it in the Menhir
parser generator (Pottier and Régis-Gianas, 2021). Menhir’s support for Jeffery’s er-
ror diagnosis methodology is exploited in production by several compilers, such as
CompCert C (Leroy, 2021), Catala (Merigoux et al., 2021), and Stan 3 (Talts, 2019).

A reachability algorithm has applications beyond error diagnosis. It could be
used, for instance, to test an LR(1) parser by generating a set of input sentences that
reaches every state or one that triggers every reduction in every state. It could also
be used as a component in syntax error recovery algorithms and in syntactic com-
pletion algorithms.

Challenges and Contributions The reachability problem in pushdown systems is
a well-known challenge. While a general O(n3) solution is well-established, the fine-
grained complexity remains under investigation—many special cases admit faster
algorithms, though their classification remains incomplete (Chistikov et al., 2022;
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Koutris and Deep, 2023). This work provides an efficient solution for the case of LR
automata with conflict resolution but does not investigate the relation with other
classes of context-free languages (CFLs).

The question that appears in the second problem statement above is paramet-
erised with a transition tr and with two terminal symbols a and z. Thus, the number
of questions that may be asked is |Tr |× |T |2, where Tr is the set of all transitions and
T is the set of all terminal symbols. An analysis of the problem reveals that these
questions seem interdependent, so answering one of them potentially requires an-
swering many of them. Without even analysing the cost of answering one question,
this suggests that the complexity of a reachability algorithm can be high. We analyse
the complexity of a naïve reachability algorithm later on (§5.3.3).

Pottier (2016) proposes a reachability algorithm whose implementation in Men-
hir (Pottier and Régis-Gianas, 2021) has been in use for five years. We find that, in
practice, this algorithm does not scale as gracefully as one might wish. For the OCaml
grammar and parser, which involve 121 terminal symbols, 230 nonterminal symbols,
and 1672 LR(1) states, we find that this algorithm can require over 5 gigabytes of
memory and 5 minutes of run time. Although the space requirement is tolerable,
such a time requirement is much too large to achieve a smooth edit-compile-debug
cycle.

Contribution We present a new reachability algorithm which we find is much more
efficient in practice than Pottier’s algorithm. Our algorithm processes the OCaml
parser in 50 megabytes of memory and half a second, improving over Pottier by a
factor of 102 in space and 6×102 in time (§5.7).

We derive this new algorithm in two main steps. First, we propose a matrix-based
formulation of the reachability problem, which requires computing a cost matrix for
every transition. Then, we remark that cost matrices are redundant in two ways:
(a) they contain many identical columns; (b) they contain many rows whose content
is not relevant, insofar as only the combination of these rows via the function “point-
wise minimum” is of interest. This suggests that it is possible to gain space (and save
time) by merging certain rows and columns. We propose a method for determining
ahead of time (before the cost matrices are computed) which rows and columns can
be merged, as well as a direct method for constructing compact cost matrices where
these rows and columns are merged.

These ideas, combined with a number of other optimisations, allow us to report
excellent performance in practice. The largest grammar in our test suite, a grammar
for the C++ programming language (Hashimoto, 2021), is processed in 2.6 gigabytes
of memory and under one minute, whereas it could not be processed by Pottier’s
algorithm.1

1Pottier’s algorithm, as implemented by him in Menhir, is limited to 256 terminal symbols. This is
caused by the choice of a low-level representation that involves packing several pieces of information
in a single machine word. Even if this limitation was removed, our performance evaluation (§5.7)
shows that Pottier’s algorithm would not be able to handle this grammar.
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Outline After introducing some notation (§5.2), we present our formulation of the
reachability problem in terms of cost matrices (§5.3). Then (§5.4), we explain several
ways in which this formulation can be improved, including merging certain rows
and columns. This leads to a reformulation of the problem in terms of compact cost
matrices (§5.5). The paper ends with a discussion of implementation details (§5.6),
an experimental evaluation of the algorithm’s performance (§5.7), a review of the
related work (§5.8), and concluding words (§5.9).

5.2 Notation

We assume that a context-free grammar G has been fixed and that an LR(1) auto-
maton has been constructed for this grammar. We assume the reader is familiar with
these concepts (Aho and Ullman, 1972; Grune and Jacobs, 2008). In the following, we
recall some standard notation and propose specific notation useful in this paper.

LR(1) Automata We write:

• a,b,c, z ∈ T for terminal symbols,

• A ∈ N for nonterminal symbols,

• x ∈ X , where X is T ∪N , for arbitrary symbols,

• Z ∈P (T ) for sets of terminal symbols,

• w ∈ ~T for sentences (sequences of terminal symbols),

• α,β ∈ ~X for sentential forms (sequences of symbols),

• s ∈ S for automaton states.

A transition in the automaton is a directed edge from a source state s to a target
state s′. Every transition is labelled with a symbol x. The “shift” transitions are the
transitions whose label is a terminal symbol; the “goto” transitions are those whose
label is a nonterminal symbol. We write Tr for the set of all transitions.

Because the automaton is deterministic, the target state s′ of a transition is de-
termined by s and x. Thus, a transition can be identified by the pair (s, x), and Tr can
be viewed as a subset of S ×X .

The target state of a transition is given by the function target : Tr → S, which can
also be viewed as a partial function target : S × X * S. We generalise this function
so it accepts a state s and a sequence of symbols α as arguments. Thus, target(s,α)
is the state reached by following the path labelled α out of the state s, if such a path
exists. We write incoming(s′) for the set of transitions that enter the state s′, that is,
for the set {tr ∈ Tr | target(tr) = s′}.

We assume that the reduction actions of the automaton are given by a function
reduce, which maps a pair of a state s and a production A → α to a set of terminal
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symbols. When the automaton is in state s, if the next input symbol (the “lookahead
symbol”) is a member of reduce(s, A → α), then the automaton will reduce the pro-
duction A →α.

Costs A cost is either a non-negative natural number or ∞. We write N̄ for N∪ {∞},
and equip it with semiring structure. We use the min-plus semiring (N̄,⊕,⊗), where:

• x ⊕ y = min{x, y},

• the unit of ⊕ is +∞,

• x ⊗ y = x + y ,

• the unit of ⊗ is 0.

Matrices We use “cost matrices”, that is, matrices whose elements are costs. We
write “·” for the matrix product over the cost semiring. The rows and columns of cost
matrices are indexed with terminal symbols (§5.3). Later on, we introduce “compact
cost matrices” whose rows and columns are indexed with sets of terminal symbols
(§5.5).

Partitions A partition of the terminal symbols is a set P of non-empty subsets of T
such that every terminal symbol is a member of exactly one element of P . We write
Part(T ) for the set of all partitions of T . We let P,Q range over partitions, and p, q
range over classes, that is, elements of a partition.

A partition P refines a partition Q if every element of P is a subset of some element
of Q. We write P ¹Q when this is the case. Equipped with this partial order, Part(T )
forms a lattice. Its bottom element ⊥ is the finest partition, {{a} | a ∈ T }. Its top
element > is the coarsest partition, {T }. The meet of two partitions P and Q, written
P ∧Q, is the coarsest partition that refines both P and Q. The join of two partitions P
and Q, written P ∨Q, is the finest partition that is refined both by P and by Q.

If Z is a set of terminal symbols, we write Z ? for the partition {Z ,T \ Z } \ {;}.
This partition has at most two classes, namely Z and T \ Z . If one of these sets is
empty, then it has only one class. This partition distinguishes members versus non-
members of Z .

We let Z ! stand for ({T \ Z }∪⋃
{{a} | a ∈ Z }) \ {;}. The classes of this partition are

T \Z (if it is non-empty) and the singletons {a}, where a ranges over Z . This partition
distinguishes all members of Z , and places all non-members of Z in a single class.
We have Z ! ¹ Z ?.

Finally, if P is a partition, we define the partition P ↓ Z , pronounced “P inside
Z ”, as (P ∧ Z ?)∨ Z !. Taking the meet of P and Z ? refines P by distinguishing mem-
bers versus non-members of Z . Then, taking a join with Z ! coarsens the result by
conflating all non-members of Z into a single class. We have Z ! ¹ P ↓ Z ¹ Z ?.
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5.3 Problem Specification

5.3.1 Transition Costs

Let us briefly explain again what problem we wish to solve. In short, for each trans-
ition in the automaton, we would like to determine under what conditions this trans-
ition can be taken. So, we might wish to ask:

Question 1 Let tr be a transition. What input sentences w allow tr to be taken and
are consumed when it is taken?

In the case of a shift transition (s, a), naturally, the answer is immediate: this trans-
ition can be taken when the first input symbol is a, and this symbol is consumed in
the process.

In the case of a goto transition (s, A), answering is more difficult. To take such
a transition, the automaton must consume a sequence w of input symbols so as to
reach a state where one of the productions associated with the symbol A, say A →α,
can be reduced. There, the automaton must reduce α to A, which is permitted only
if the input symbol that follows w , say z, allows such a reduction. The symbol z is
known as the lookahead symbol: it is consulted before the reduction, but not con-
sumed.

Because the answer to the question depends on z, the first input symbol that fol-
lows w , and because we seek a pleasant decomposition of the main problem into
subproblems, the need naturally arises to refine our question by imposing a con-
straint on the first symbol a of the sentence w z.

Question 2 Let tr, a, and z be a transition and two terminal symbols. What sen-
tences w allow tr to be taken, under the assumption that the first input symbol follow-
ing w is z, and under the constraint that the first symbol of w z must be a?

For greater simplicity, instead of answering Question 2 with a set of sentences,
we focus on computing the minimum length of a sentence in this set, a number in
N̄. Once the cost of every transition is known, it is a routine exercise to reconstruct a
minimum-cost sentence that allows each transition to be taken.

The answer to Question 2 is the cost of transition tr with respect to the initial
symbol a and the lookahead symbol z. We write cost(tr)a,z for this cost; it is a number
in N̄.

It is useful to think of transition costs as matrices. For each transition tr, cost(tr)
can be viewed as a cost matrix whose rows are indexed by a and whose columns
are indexed by z. This matrix can be viewed as the answer to Question 1. Whereas
Question 2 is a family of questions, indexed by a and z, each of which is answered by
a single cost, Question 1 is a single question that is answered by a cost matrix.

5.3.2 A Characterisation of Transition Costs

We now characterise the cost matrices cost(tr) by providing a family of equations that
these matrices satisfy.
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The cost of a shift transition (s, a) is easy to express. It is 1 if the constraint im-
posed on the initial input symbol allows taking this transition; it is ∞ otherwise.
Thus:

cost(s, a)b,z = 1 if a = b
cost(s, a)b,z =∞ otherwise

In other words, the matrix cost(s, a) contains a row of 1’s at index a and contains ∞
everywhere else:

...
cost(s, a) = a

...

 ∞ . . . ∞
1 . . . 1
∞ . . . ∞


The cost of a goto transition cost(s, A) is characterised by the following equations:

cost(s, A) = ⊕
A→α


let s′ = target(s,α) in
cost(s, A → ϵ•α) ·
∆reduce(s′, A →α)

(5.1)

cost(s, A →α•xβ) =
{

cost(s, x) ·
cost(target(s, x), A →αx•β)

(5.2)

cost(s, A →α•ϵ) = IT (5.3)

Figure 5.1: A Characterisation of Transition Costs

Equation 5.1 Equation 5.1 expresses the fact that the cost of the transition (s, A) is
the minimum, over all productions A →α, of the costs of the paths that begin in state
s, follow a sequence of transitions labelled α, and reach a state where A → α can be
reduced.

Equation 5.1 involves the auxiliary matrix cost(s, A → α•β), defined by Equa-
tions 5.2 and 5.3, which denotes the cost of a path that begins in state s, is labelled β,
and reaches a state where the production A →αβ can be reduced.

Equation 5.1 involves a multiplication with the matrix ∆Z , where Z is the set
of lookahead symbols that allow reducing A → α in state s′. The matrix ∆Z , pro-
nounced “filter Z ”, is defined as follows:

(∆Z )a,z = 0 if a = z and a ∈ Z
(∆Z )a,z =∞ otherwise

We note that ∆T is the identity matrix. In general, ∆Z is a variant of the identity
matrix where the diagonal entries whose index lies outside of Z are set to ∞ instead
of 0.

A multiplication M ·∆Z produces a copy of the matrix M where all columns
whose index lies outside Z are set to ∞. The multiplication with ∆Z in Equation 5.1
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reflects the idea that if reduction is permitted, then it has zero cost since no input
symbol is consumed; if it is not permitted, then it has infinite cost; and whether it is
permitted depends on the lookahead symbol.

Equations 5.2 and 5.3 Equation 5.2 concerns the case of a non-empty path, la-
belled with the sentential form xβ. The cost matrix for the first transition, which
leaves the state s and is labelled x, and the cost matrix for the remaining transitions,
which begin in the state target(s, x)2 and follow the path labelled β, are combined via
matrix multiplication. Indeed, multiplication expresses the idea that the “lookahead
symbol” that is chosen while examining the first transition must also be the “first
symbol” that is chosen while examining the remaining transitions.

Equation 5.3 concerns the case of an empty path, labelled with the sentential
form ϵ. The cost matrix for this path is the identity matrix IT .

Recursion Equations 5.1–5.2 are mutually recursive. They are monotonic with re-
spect to the ordering (N̄,≤), lifted pointwise to matrices. That is, when the cost
matrices that appear in the right-hand side of an equation grow, the value of this
right-hand side grows as well. This ensures that Equations 5.1–5.3 have least and
greatest solutions. The desired cost matrices form the least solution.

5.3.3 Computing Transition Costs

The equations 5.1–5.3 form a system of monotonic equations whose variables are
matrices of costs and whose right-hand sides involve operations on matrices, such
as multiplication · and minimum ⊕.

To solve these equations, one approach is to use a generic least fixed point com-
putation algorithm: see, e.g., Pottier (2009) and references therein. However, such an
approach is very naïve. Indeed, working at the level of matrices is too coarse-grained:
when a matrix is updated, every right-hand side where this matrix appears must be
re-evaluated. Thus, even a tiny update (one that affects only a few matrix entries)
requires a large amount of computation.

A better approach is to work at the level of matrix entries. Equations 5.1–5.3
can be reformulated as a system of equations whose variables are costs and whose
right-hand sides involve operations on costs, such as minimum and addition. The
benefit of such a reformulation is twofold. First, this reduces the amount of com-
putation that a generic fixed point computation algorithm must perform. Second,
because addition is a superior function,3 the reformulated problem is of a specific
form that can be efficiently solved by Knuth’s generalisation of Dijkstra’s algorithm
Knuth (1977). This algorithm is potentially more efficient than a generic fixed point
algorithm, and its worst-case time complexity is easier to analyse.

2It may be the case that there is no transition labelled x out of the state s, in which case target(s, x)
is undefined. Then, we consider that the right-hand side of Equation 5.2 yields a matrix where every
entry is ∞.

3A function f of type N̄× N̄→ N̄ is superior if f (x, y) ≥ max(x, y) holds.
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Unfortunately, this improved approach remains naïve: its space and time com-
plexities are quite poor.

The space complexity of this approach can be assessed as follows. The number of
matrices of the form cost(tr) is |Tr |, the number of transitions in the automaton. The
number of matrices of the form cost(s, A →α•β) is the total star size S Pottier (2016).
We believe that |Tr | ≤S holds. Thus, the number V of cost variables is O(S ×|T |2).
This is also the space required by the cost matrices alone.

Provided a suitable “priority queue” data structure is used, the time complexity of
Knuth’s algorithm is O(V logV +E) where E is the number of dependencies between
variables that the equations exhibit. Here, some variables participate in B depend-
ency relations, where B is the maximum number of productions associated with each
nonterminal symbol; some participate in |T | relations. Assuming that B is smaller
than |T |, which is usually true in practice, we find that E is O(V × |T |). Assuming
that logS is smaller than |T |, which is usually true in practice, we find that V logV is
dominated by E , so the time complexity of this approach is O(S ×|T |3). This analysis
seems to be supported by our experiments (§5.7).

In practice, what does this mean? The largest grammar in our test suite, a gram-
mar for C++ Hashimoto (2021), has 422 terminal symbols and 755 nonterminal sym-
bols. The LR(1) automaton produced by the Menhir parser generator has over 104

states and 5×105 transitions. Its total star size S is over 2×106. This is the number of
cost matrices that we wish to compute. Since the size of a matrix is 4222 = 1.78×105,
the total size of the matrices is over 3.63×1011. Assuming that a matrix entry occu-
pies a 64-bit word, this requires at least 2.6 terabytes of memory. Considering today’s
economic constraints on the price and availability of memory, this is not realistic:
the naïve algorithm does not scale well. The optimisations that we describe reduce
the space consumption of the algorithm, in this case, by a factor of more than 104.

5.4 Overview of Optimisations

Four main ideas allow us to reduce the space and time requirements of the naïve
algorithm, namely: merging of identical columns, merging of peer rows, matrix chain
multiplication optimisation, and maximal sharing of matrix multiplications. These
optimisations reduce the size of the cost matrices that we wish to compute; therefore,
the computation time is reduced as well. The computation itself is performed in the
manner that was suggested (§5.3.3), that is, by formulating the problem as a system
of equations bearing on cost variables, and by using Knuth’s algorithm to solve these
equations.

Merging Identical Columns In general, at each step, the lookahead symbol de-
termines the behaviour of the LR(1) automaton: to shift a terminal symbol, to reduce
a production, or to report a syntax error. However, it is often the case that two distinct
lookahead symbols dictate the same behaviour. For instance, if the terminal symbols
z1 and z2 are both members of the set reduce(s′, A →α), then, in state s′, the distinc-
tion between these symbols is irrelevant: both allow reducing the production A →α.
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This implies that some cost matrices have repeated columns. Our first optimisation
is to precompute which columns must be identical and merge them ahead of time so
that they are computed only once.

Merging Peer Rows Suppose that the cost computation involves a matrix multi-
plication M ·M ′, which arises as an instance of Equation 5.2. Thanks to the previous
optimisation, we may happen to know ahead of time that the columns indexed by
b1 and b2 in the matrix M must be equal. This implies that the rows indexed by b1

and b2 in the matrix M ′ participate in the multiplication as peers: they always ap-
pear in an expression of the form (Ma,b1 ⊗M ′

b1,c )⊕(Ma,b2 ⊗M ′
b2,c ), where the equality

Ma,b1 = Ma,b2 holds, so this expression is equal to Ma,b1 ⊗ (M ′
b1,c ⊕ M ′

b2,c ). Thus, to
compute the result of the multiplication, it is not necessary to have separate access
to the rows M ′

b1,_ and M ′
b2,_. Instead, it suffices to have access to the combination of

these rows by the function “minimum”, that is, M ′
b1,_⊕M ′

b2,_. This indicates that, even
though these rows are not identical, they can be merged. Instead of allocating space
for two rows, one can allocate space for a single row and use it to store M ′

b1,_ ⊕M ′
b2,_.

This reasoning assumes that the matrix M ′ participates in only one multiplica-
tion, namely M · M ′. If M ′ participates in several multiplications (a situation that
typically arises when a state has several incoming transitions) then the rows M ′

b1,_
and M ′

b2,_ can be merged only if every matrix that appears on the left-hand side of a

multiplication _ ·M ′ is known to have identical columns at indices b1 and b2.
Our second optimisation, therefore, is to determine ahead of time which rows are

peers and merge them.

Matrix Chain Multiplication Optimisation Once certain columns and rows have
been merged, as described above, we no longer work with cost matrices whose di-
mensions are |T | by |T |. Instead, we compute compact cost matrices, which are
rectangular and can have various dimensions. Therefore, our third optimisation is
to identify chains of multiplications and optimise each such chain by exploiting the
associativity of multiplication. A standard dynamic programming algorithm is used
to solve the Matrix Chain Ordering Problem (Cormen et al., 2009, §15.2) Wikipedia
(2021c).

As a consequence of this optimisation, we do not necessarily compute the auxili-
ary matrices cost(s, A →α•β) described in the previous section. Because we optimise
the chain of multiplications expressed by Equation 5.2, we may go through a differ-
ent family of auxiliary matrices, while preserving the end result of the chain, namely
the matrix cost(s, A → ϵ•α), which appears in Equation 5.1.

Maximal Sharing of Matrix Multiplications Often, two paths of interest in the auto-
maton share a suffix. This in turn means that two matrix multiplication chains share
a suffix.

For instance, suppose target(s1,α) = target(s2,α) = s′, that is, the path labelled α

out of s1 and the path labelled α out of s2 lead to a common state s′. Suppose that
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there exists a production A → αβ and that the states s1 and s2 have outgoing trans-
itions labelled A. Then, we would like to compute the cost matrices cost(s1, A →
ϵ•αβ) and cost(s2, A → ϵ•αβ). Each of these matrices is the result of a multiplication
chain, and these two chains share a common suffix: indeed, both of them involve the
matrix cost(s′, A →α•β).

This raises a question: when we optimise two multiplication chains that share a
suffix, should we optimise each chain separately, ignoring the presence of a shared
suffix, or should we decompose the two chains into three subchains (two prefixes
and a shared suffix) that do not overlap and can be optimised independently? The
first option yields greater freedom in optimising long multiplication chains, but des-
troys sharing that is present in the initial formulation of the problem and thereby
potentially creates redundant computation. The second option preserves sharing
but gives up opportunities for optimising long chains of multiplications.

After experimenting with both options, we choose the first one, which seems
most beneficial. To make up for the loss of sharing that it causes, we explicitly im-
pose maximal sharing: that is, after each multiplication chain has been separately
optimised, we use hash-consing Filliâtre and Conchon (2006); Wikipedia (2021a) to
discover matrix multiplication trees that appear several times, and share them again.
This is our fourth and last major optimisation.

In the next section (§5.5), we describe the first two key optimisations, namely the
merging of rows and columns, which allows us to compute compact cost matrices.
Then (§5.6), we describe some implementation details that lead to increased effi-
ciency in practice.

5.5 Merging Rows and Columns

The cost matrices have dimension |T |×|T |: their rows and columns are indexed with
terminal symbols. In this section, we would like to merge certain rows and certain
columns. We wish to do so a priori: that is, before any matrices are constructed,
we wish to compute which rows and which columns can be merged. This allows us
to directly construct compact cost matrices whose rows and columns are indexed by
equivalence classes of terminal symbols.

We proceed as follows for each transition (s, x):

1. We compute two partitions, named first(s) and follow(s, x). The partition first(s)
tells which rows in the cost matrix associated with this transition can be merged;
the partition follow(s, x) tells which columns can be merged.

2. We compute a compact cost matrix ccost(s, x) whose row indices range over
first(s) and whose column indices range over follow(s, x). An entry in this mat-
rix is identified by two equivalence classes p ∈ first(s) and q ∈ follow(s, x).

These two phases are described in the next two subsections.
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5.5.1 Which Rows and Columns Can Be Merged?

To begin, we define the functions first : S → Part(T ) and follow : Tr → Part(T ). These
functions determine which columns and rows we can safely merge.

As explained earlier (§5.4), we merge two columns when we know ahead of time
that they would be identical. Thus, we need follow to satisfy the following soundness
property:

∀q ∈ follow(tr) ∀b, b′ ∈ q ∀a cost(tr)a,b = cost(tr)a,b′

That is, if the partition follow(tr) indicates that the terminal symbols b and b′ are
equivalent (members of the same class), then the columns indexed by b and b′ in the
matrix cost(tr) must be identical. The reverse implication is not true: the columns
indexed by b and b′ may happen to be identical even when this is not predicted by
the partition follow(tr), that is, even when b and b′ are not members of the same
class. Thus, the partition follow(tr) is a conservative prediction of which columns
will be identical.

Another way to think about follow(tr) is that this partition indicates which dis-
tinctions between lookahead symbols definitely have no influence on how the trans-
ition tr can be taken.

It does not seem easy to state a soundness property that first must satisfy. As ex-
plained earlier (§5.4), two rows are merged not when they are identical, but when we
know in advance that only the combination of these rows by the function “minimum”
is relevant. So, we state no such property.

The partitions first(s) and follow(s, x) are characterised by a set of recursive mono-
tone equations: they form the greatest fixed point of these equations. Any fixed point
is sound; the greatest fixed point allows the greatest amount of merging. The equa-
tions are as follows:

follow(s, a) => (5.4)

follow(s, A) = ∧
A→α


let s′ = target(s,α) in
let Z = reduce(s′, A →α) in
first(s′) ↓ Z

(5.5)

first(s) = ∧
tr∈incoming(s)

follow(tr) (5.6)

Figure 5.2: Which Rows and Columns Can Be Merged

Equation 5.4 indicates that the partition follow(s, a) is >. This is sound because
all columns in the matrix cost(s, a) are identical (§5.3.2). An equivalent statement is
that follow(tr) is > when tr is a shift transition.

Equation 5.5 Equation 5.5 defines follow(s, A), where we assume that the state s
has an outgoing transition labelled A. In doing so, it aims to answer the question:
“which lookahead symbols influence the manner in which this transition can be
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taken?” If two symbols b and b′ lie in the same class, then the input sentences that
allow taking this transition are the same, regardless of whether the lookahead symbol
is b or b′.

This transition can be taken if there is a production A →α such that (1) the sen-
tential form α can be recognised, taking the automaton from state s to state s′ =
target(s,α), and (2) in state s′, the production A → α can be reduced. Any such pro-
duction can be chosen, hence Equation 5.5 involves a meet over all such produc-
tions. Let us now focus on one such production and examine the right-hand side of
Equation 5.5.

In the state s′, reducing the production A → α is permitted if and only if the
lookahead symbol is a member of the set reduce(s′, A → α). Let us refer to this set
as Z . Then, there definitely is no need to distinguish between non-members of Z : in-
deed, all lookahead symbols outside Z forbid reducing the production A → α. This
explains why a partition of the form “. . . ↓ Z ” appears in Equation 5.5.

There remains to explain what partition to choose in place of “. . .”. This determ-
ines which terminal symbols inside Z must be distinguished.

Choosing ⊥ means that all symbols inside Z must be distinguished. That would
be sound but pessimistic, largely preventing the merging of rows and columns.

Choosing > means that no distinction inside Z is necessary. That would be un-
sound. Indeed, before reducing A → α, the right-hand side α must be recognised,
and this process may be influenced by the lookahead symbol.

What partition describes this influence in a sound way, and is not as pessimistic
as ⊥? We remark that, in order to go from the state s along the path labelled α to the
state s′, the automaton must (as its final step) enter the state s′, and to do so, it must
follow some transition tr ∈ incoming(s′). Therefore, two lookahead symbols must be
distinguished only if this distinction influences some transition tr ∈ incoming(s′). In
other words, a sound choice is the meet, over all such transitions, of the partitions
follow(tr). This happens to be precisely first(s′).

Equation 5.6 Equation 5.6 defines the partition first(s) as the meet of the partitions
follow(tr), where tr ranges over the incoming transitions of the state s. The reason
for this is as follows. The partition first(s) is supposed to determine which rows in
a cost matrix cost(s, x) can be merged. As explained earlier (§5.4), two rows in such
a matrix can be merged if this matrix is always multiplied (on its left) with matrices
where the corresponding columns are identical. This is the case if every incoming
transition tr of state s has a cost matrix cost(tr) where these columns are identical.
Thus, for every tr ∈ incoming(s), we need first(s) ¹ follow(tr) to hold. This explains
Equation 5.6.

Because all of the incoming transitions of a state s carry the same symbol, either
all of them are shift transitions, labelled with a terminal symbol a, or all of them are
goto transitions, labelled with a nonterminal symbol A. In the former case, Equa-
tion 5.6 can be simplified: by Equation 5.4, every incoming transition tr satisfies
follow(tr) =>, so first(s) is >.
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5.5.2 A Characterisation of Compact Cost Matrices

Compact Cost Matrices For each transition (s, x), we wish to compute a compact
cost matrix ccost(s, x), whose row indices are members of first(s) and whose column
indices are members of follow(s, x).

We now provide several equations that characterise these matrices, and allow
them to be computed.
These equations involve a family of auxiliary matrices ccost(s, A → α•β) of dimen-
sions first(s) by first(target(s,β)).

The compact cost matrix ccost(s, a) associated with a shift transition is defined
as follows:

ccost(s, a)p,q = 1 if a ∈ p
ccost(s, a)p,q =∞ otherwise

Since follow(s, a) is >, a one-class partition, this matrix has width one: it is a column
matrix. It has exactly one “1” entry, found at the unique index p such that a ∈ p holds,
and “∞” entries everywhere else.

The compact cost matrix ccost(s, A) associated with a goto transition and the
auxiliary matrices ccost(s, A →α•β) are defined as follows:

ccost(s, A) = ⊕
A→α

{
ccost(s, A → ϵ•α) ·
creduce(s, A →α)

(5.7)

ccost(s, A →α•xβ) =


let s′ = target(s, x) in
ccost(s, x) ·
coerce(follow(s, x),first(s′)) ·
ccost(s′, A →αx•β)

(5.8)

ccost(s, A →α•ϵ) = Ifirst(s) (5.9)

Figure 5.3: A Characterisation of Compact Cost Matrices

Equation 5.7 Equation 5.7 resembles Equation 5.1 in Figure 5.1, but the square
matrix ∆reduce(target(s,α), A → α) that is visible in Equation 5.1 is replaced with
the rectangular matrix creduce(s, A → α), whose dimensions are first(target(s,α)) by
follow(s, A). This matrix is defined as follows:

creduce(s, A →α)p,q = 0 if q ⊆ Z ∧q ⊆ p
where Z = reduce(s′, A →α)
and s′ = target(s,α)

creduce(s, A →α)p,q =∞ otherwise

This generalises the definition of the matrix ∆Z to a setting where, instead of two
terminal symbols a and z, we consider two classes p ∈ first(target(s,α)) and q ∈
follow(s, A).
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It is worth noting that, by virtue of Equation 5.5, we have follow(s, A) ¹ Z ?. This
implies that q must lie either entirely within Z or entirely outside of Z . Thus, the test
q ⊆ Z is cheap: it suffices to pick an arbitrary element of q and to test whether it is a
member of Z .

Also by virtue of Equation 5.5, we find that follow(s, A) refines first(target(s,α)) ↓
Z , from which we can deduce that follow(s, A) ↓ Z refines first(target(s,α)) ↓ Z . This
implies that the condition q ∩ Z ⊆ p ∩ Z can be decided by picking an arbitrary ele-
ment of q and testing whether it is a member of p ∩ Z . Assuming that q ⊆ Z holds,
this can be rephrased as follows: q ⊆ p can be decided by picking an arbitrary ele-
ment of q and testing whether it is a member of p.

Equation 5.8 Equation 5.8 is analogous to Equation 5.2, but a coercion matrix must
be inserted in the middle of the matrix multiplication expression, because the two
matrices ccost(s, x) and ccost(target(s, x), A →αx•β) do not have matching numbers
of columns and rows. The columns of the former matrix are indexed with classes in
follow(s, x), while the rows of the latter are indexed with classes in first(target(s, x)).
There is a refinement relation between these partitions: as a consequence of Equa-
tion 5.6, we have first(target(s, x)) ¹ follow(s, x). In such a situation, it is possible to
construct a coercion matrix, whose definition and meaning are explained next.

Coercion Matrices Let P,Q ∈ Part(T ) be two partitions such that Q ¹ P holds, that
is, Q refines P . The matrix coerce(P,Q), whose rows are indexed with classes in P and
whose columns are indexed with classes in Q, is defined as follows:

coerce(P,Q)p,q =
{

0 if q ⊆ p

∞ otherwise

Because Q refines P , every class q ∈Q is a subset of some class in P . Thus, for every
p ∈ P and q ∈Q, the class q is a subset of either p or T \ p. Thus, the condition q ⊆ p
can be decided by testing an arbitrary element of q .

In the special case where P and Q are the same partition, the coercion matrix
coerce(P,Q) is square: it is an identity matrix. Otherwise, the matrix coerce(P,Q) is
rectangular: it has more columns than rows. The row identified by the class p has a
“0” entry at each column q such that the class q is a piece of the class p, and “∞”
entries elsewhere. Since every class q ∈ Q is a subset of exactly one class in P , on
every column, there is exactly one “0” entry.

The matrix coerce(P,Q) has the remarkable property that, when used in a matrix
multiplication, it serves as an adapter: it can expand a matrix from dimension P to
dimension Q and shrink a matrix from dimension Q to dimension P .

Indeed, the product M ·coerce(P,Q) expands the matrix M from width P to width Q
by duplicating columns: the column found at index p in the matrix M is copied in
the matrix M ·coerce(P,Q) at every index q such that q ⊆ p holds.

In the opposite direction, the product coerce(P,Q) ·M shrinks the matrix M from
height Q to height P by merging rows: the row found at index p in the product
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coerce(P,Q) ·M is the pointwise minimum of the rows found in the matrix M at in-
dices q such that q ⊆ p holds.

Soundness of Compact Cost Matrices The cost matrix cost(s, x) and the compact
cost matrix ccost(s, x) are related as follows:

Claim 2 Let (s, x) be a transition. Then, we have:

coerce(first(s),⊥) · cost(s, x) =
ccost(s, x) ·coerce(follow(s, x),⊥)

The multiplication by coerce(follow(s, x),⊥) on the second line duplicates some
columns of the compact cost matrix, so as to undo the merging of identical columns.

The multiplication by coerce(first(s),⊥) on the first line compresses some rows of
the cost matrix by computing their pointwise minimum. This reflects the fact that the
compact matrix contains less information than the cost matrix: some information is
lost when peer rows are merged.

5.6 Implementation Details

We now propose an overview of several implementation details and optimisations
that, together, yield significant additional performance improvements.

5.6.1 Representing Partitions

The computation of first and follow partitions (§5.5.1) requires an efficient repres-
entation of partitions of the set T of terminal symbols. Several options come to mind.
Following Lee (1981), one could represent a partition as an array of size |T |, where
each terminal symbol is mapped to a representative element of its block. Or, follow-
ing Hopcroft (1971) and Paige and Tarjan (1987), one could adopt the mutable data
structures used in partition refinement algorithms, which involve doubly-linked lists
of elements and doubly-linked lists of blocks. In our setting, a persistent and com-
pact representation is desirable. We represent a partition as an (unordered) linked
list of blocks, and represent a block as a sparse bit set.4 In the worst case, a partition
occupies O(|T |) space in memory; yet, in several common cases, it can require signi-
ficantly less space. Indeed, we allow one block to be omitted from the linked list of
all blocks. This causes no loss of information: the omitted block is the complement
of the blocks that do appear in the list. For example, in the representation of the par-
titions Z ? and Z !, the block T \ Z can be omitted. Thus, these partitions occupy only
O(|Z |) space.

Our implementation of sparse bit sets is able to efficiently compute a “unique-
or-shared prefix” of two nonempty bit sets Z1 and Z2. Let us write Z < Z ′ when

4Whereas an ordinary bit set would be represented as an array of machine words and would have
size O(|T |), regardless of its cardinality, a sparse bit set is represented as linked list of pairs of an integer
offset and a machine word, and has size O(n), where n is the cardinality of the bit set.
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every element of Z is less than every element of Z ′, according to an arbitrary, fixed
total order on T . Then, the unique-or-shared-prefix operation produces either (a) a
nonempty subset Z ′

1 of Z1 such that Z ′
1 < Z1 \ Z ′

1 and Z ′
1 < Z2 are satisfied; or (b) sym-

metrically, a nonempty subset Z ′
2 of Z2 such that Z ′

2 < Z1 and Z ′
2 < Z2\Z ′

2 are satisfied;
or (c) a nonempty subset of Z1 ∩Z2 such that Z ′

1 < Z1 \ Z ′
1 and Z ′

2 < Z2 \ Z ′
2.

This operation is used in the construction of a carefully optimised implementa-
tion of

∧
, the meet of a family of k partitions. This algorithm is inspired by the stand-

ard k-way merge algorithm Wikipedia (2021b), whose main loop involves a priority
queue.

In our setting, the priority queue is populated with pairs of a block and its proven-
ance. The priority of such a pair is the minimum element of the block. A provenance
is a set of identifiers, where initially each block in each of the k partitions receives a
unique identifier. Pairing a block with a provenance allows us to record which ini-
tial blocks this block is a subset of. When the priority queue is first populated, the
provenance of each block is a singleton set containing just the identifier of this block.

The algorithm’s main loop proceeds as follows. As long as the queue has size
greater than one, the two blocks with minimum priority, say Z1 and Z2, are extracted,
and their unique-or-shared prefix, say Z , is computed. If it is unique, then it is set
aside, together with its provenance; if it is shared, then it is inserted into the queue
again with an updated provenance, the union of the provenances of Z1 and Z2. In
either case, the remainders of the two blocks, namely Z1 \ Z and Z2 \ Z , are inserted
into the queue (if they are non-empty).

Once this loop terminates, the blocks that have been set aside are sorted accord-
ing to their provenance, and those with the same provenance are merged. The list of
blocks thus obtained is the meet of the k input partitions.

5.6.2 Approximating first and follow Partitions

We have presented the computation of first and follow as the computation of a greatest
fixed point. A standard fixed-point computation algorithm Pottier (2009), based on a
chaotic iteration scheme, can be used to compute this fixed point in an exact way. In
our experience, however, chaotic iteration can be slow, so this computation can be-
come a bottleneck. To address this issue, we use a faster algorithm, which visits each
cost variable at most twice and computes a post-fixed point, that is, a solution of the
inequations obtained by replacing equality “=” with the refinement relation “¹” in
Equations 5.7–5.9. Because every post-fixed point refines the greatest fixed point,
the partitions that we obtain are an under-approximation of first and follow. Such
an approximation does not endanger the correctness of our approach; it just means
that we do not merge rows and columns as aggressively as we could with the greatest
fixed point.

Our algorithm examines the dependency graph formed by all instances of Equa-
tions 5.7–5.9, computes its strongly connected components, and processes one com-
ponent at a time, in topological order. Inside each component, it proceeds as follows.
By inspection of Equations 5.7–5.9, one can see that the partition variables that be-
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long in this component form two families X1, . . . , Xm and Y1, . . . ,Yn
5 and that the in-

equations these variables must satisfy are of four kinds:

Xi ¹ Pi where Pi is a constant partition (A)
Xi ¹ Y j ↓ Zi j where Zi j is a constant set (B)
Y j ¹Q j where Q j is a constant partition (C )
Y j ¹ Xi (D)

Our algorithm solves these constraints as follows:

1. Compute P =∧
i Pi ∧∧

i j Zi j ?∧∧
j Q j .

2. Assign to each Xi the value Pi ∧∧
j (P ↓ Zi j ).

3. Assign to each Y j the value Q j ∧∧
i Xi .

It is not difficult to check that this assignment satisfies all of the inequations A–D .
The second step is where each Xi is assigned an under-approximation of its ideal
value; in the third step, each Y j receives a value as accurate as possible, considering
the approximation made in the previous step.

In our experience, this approximation leads to an increase of less than 2% in
the size of the compact cost matrices, due to the fact that the merging of rows and
columns is no longer as aggressive as it could be. This does not lead to an observ-
able slowdown in the computation of compact cost matrices. On the other hand, the
approximate computation of first and follow can be 10 times faster than the exact
computation. As a result, it is no longer a bottleneck.

5.6.3 Replacing Knuth’s Priority Queue with a FIFO

We have indicated earlier (§5.3.3) that the computation of the compact cost matrices
(§5.5.2) can exploit Knuth’s algorithm Knuth (1977), which has known asymptotic
worst-case complexity. This is attractive, because it makes it easy to assess the time
complexity of our algorithm (§5.3.3). However, we find that a FIFO queue offers sim-
ilar performances in practice while being simpler to implement. Knuth’s algorithm
guarantees that every matrix entry is visited at most once, so that, when an entry is
visited, it is assigned its final value. By using a FIFO queue instead of a priority queue,
we lose this property: an entry may be visited several times. In practice, we find that
entries are visited 1.1 times on average. This is a small price to pay. In return, a FIFO
queue is easier to implement and can be (marginally) more compact and faster.

5.6.4 Representing Dependencies

During the computation of compact cost matrices (§5.5.2), an efficient representa-
tion of the dependencies between matrix entries is needed, so that, when an entry is
updated, the entries that depend on it can be enqueued for re-examination. There

5The Xi ’s correspond to follow partitions, while the Y j ’s correspond to first partitions.
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is a space-time trade-off between an explicit representation, where the dependency
edges form a graph that is explicitly stored in memory, and an implicit representa-
tion, where the dependency edges are not stored in memory, but can be computed
on demand.

The number of matrix entries can be huge and is the dominating factor that de-
termines the memory requirement of this computation. Thus, we strive to maintain
as little information per matrix entry as possible, and cannot use a fully explicit rep-
resentation of dependency edges.

To every entry in every compact cost matrix, we assign a unique number. Then,
with each entry, we associate three pieces of information, which occupy three words
in memory. One piece is the content of this matrix entry, that is, a cost, represented as
a machine integer. The second piece is a reference to the matrix to which this entry
belongs. (Because entries are numbered sequentially and because the dimensions
of every matrix are known, this information suffices to also recover the coordinates
of this entry within its matrix.) The third and last piece is either null or the num-
ber of another matrix entry: this way, the FIFO queue of all “dirty” matrix entries is
represented as a linked list.

To encode the dependencies between matrix entries, we combine a coarse-grained
explicit scheme and a fine-grained implicit scheme. At the outer level, dependencies
between matrices are explicitly stored in memory. At the inner level, dependencies
between matrix entries are computed on demand. Given the coordinates of an entry
and the (outer-level) dependencies of the matrix in which it appears, we are able to
enumerate the matrix entries that depend on this entry.

5.6.5 Representing Constant Matrices

In general, a cost matrix is represented as an array of entries. This can be quite ex-
pensive in terms of space. We identify several cases where a specialised representa-
tion is beneficial.

The matrices ccost(s, a) are column matrices where a single row contains a “1”
entry. We store just the index of this row.

The auxiliary matrices ccost(s, A → α•ϵ) need not be represented at all. Indeed,
they are identity matrices. If they appear in a multiplication, then this multiplication
can be simplified. If they appear in a minimum ⊕, then the result matrix is eagerly
initialised with appropriate “0” entries.

The coercion matrices that appear in products of the form M1 ·coerce(P,Q) ·M2

have two (redundant) representations. One representation allows an efficient propaga-
tion of an update in M1 to the result of the multiplication; the other representation al-
lows an efficient propagation of an update in M2. Both are sparse representations of
the coercion matrix; one representation offers efficient access to the “0” entries along
every row; the other offers efficient access to the “0” entries along every column.

Because the matrices creduce(s, A → α) always appear on the right-hand side of
a matrix multiplication, a single sparse representation, which allows efficient access
to the “0” entries along every row, suffices.
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5.6.6 Testing Block Inclusion

The construction of the creduce and coerce matrices (§5.5.2) involves many tests of
the form q ⊆ p, where it is known that either q ⊆ p or q ∩p =; must hold. Indeed, q
and p are blocks in two partitions Q and P such that Q ¹ P . Therefore, the condition
q ⊆ p can be decided by picking an arbitrary member of q and testing whether it is a
member of p.

5.7 Experimental Evaluation

5.7.1 Comparison of Three Algorithms

We compare the performance of three algorithms, namely Pottier’s algorithm Pottier
(2016), dubbed “P”, the naïve algorithm based on cost matrices (§5.3), dubbed “CM”,
and our optimised algorithm based on compact cost matrices (§5.5), dubbed “CCM”.
We run each algorithm on the 394 grammars of Menhir’s test suite. This suite con-
tains only a handful of small artificial grammars; the majority of the grammars in it
are real-world grammars, ranging from small to large grammars. The tests are run
sequentially and repeated five times; only the best time is kept. We use an Intel Xeon
E7-4870 machine running at 2.4Ghz, with 1TB of RAM.

Algorithm Compact Cost (CCM) Naïve Cost (CM) Pottier's 2016 (P)
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Figure 5.4: Performance Aspects of Reachability Algorithms

Our performance results are summarised in Figure 5.4 in four graphs. Each graph
uses a logarithmic scale along each axis.
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The top-left and top-right graphs show the time and memory consumption of
the three algorithms. To reduce the noise, only grammars whose size6 is larger than
400 are taken into account when an average7 is computed. A first finding is that CM
can be competitive with P: on average, it is 3 times faster, but consumes 5 times more
memory. A second finding is that CCM is the clear winner. On average, it is 95 times
faster and uses 215 times less memory than CM. Compared with P, it is on average
300 times faster and uses 42 times less memory. In fact, the larger the grammar, the
greater the gain: our algorithm can be up to 2700 times faster than Pottier’s, and can
use as little as 470 times less memory.

It is worth mentioning that, as a result of its much smaller time and space re-
quirements, CCM is able to handle much larger grammars than P and CM.

The bottom-left and bottom-right graphs in Figure 5.4 are an attempt to predict
CCM’s time and memory requirements. We find that both are correlated8 with the
parameter U , which we define as follows:

U =∑
A

edges(A)∗prodsize(A)

where edges(A) is the number of transitions labelled A and prodsize(A) is the sum of
the lengths of the productions associated with the nonterminal symbol A.

5.7.2 Impact of Successive Optimisations

Table 5.1 shows the impact of several optimisations (§5.4) that form a path from Al-
gorithm CM to Algorithm CCM. The three optimisations that we consider are: (1) mer-
ging rows and columns, (2) reordering matrix products, and (3) sharing common
subexpressions in matrix products. Each optimisation requires the previous one: re-
ordering applies after merging; sharing applies after reordering.

As explained earlier (§5.4), before applying optimisations (1), (2), and (3), we take
a first step, namely: (0) abandon the sharing of cost matrices that is inherent in Equa-
tions 5.1–5.3. This has a negative impact in terms of space and time, but opens the
way to the steps that follow, which have positive impact. The four lines in Table 5.1
show the impact of steps (0), (1), (2), (3) respectively.

We measure the impact of each optimisation on the number of matrix entries,
V , and on the number of dependencies between matrix entries, E . These quantit-
ies correspond to the parameters V and E that appear in the complexity analysis of
Knuth’s algorithm (§5.3.3). The parameter V is directly related to the memory re-
quirement of Knuth’s algorithm, while the parameter E is directly related to its time
requirement. Algorithm CM is an instance of Knuth’s algorithm, so its space and time
complexity is directly related with V and E . Algorithm CCM consists of several pre-
computation phases (namely merging, reordering, sharing), followed with a run of
Knuth’s algorithm. The complexity of this last phase is still directly related with V

6The size of a grammar is the sum of the lengths of its productions.
7When an “average” is mentioned, a geometric mean is meant.
8Both have a Pearson correlation coefficient of 0.998 with U .
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and E . We find that, in practice, the pre-computation phases and the last phase have
roughly comparable execution time.

Table 5.1: Impact of Successive Optimisations
Impact on V Impact on E

Unsharing
on avg. ×1.53

up to ×2.59
on avg. ×2.08

up to ×3.72

Merging
on avg. /5.59×103

up to /9.04×104
on avg. /2.10×105

up to /1.55×107

Reordering
on avg. /0.89

up to /1.73
on avg. /2.17

up to /7.25

Sharing
on avg. /1.18

up to /1.92
on avg. /1.32

up to /2.52

Each cell of Table 5.1 shows the impact of an optimisation, that is, the ratio between
a quantity before applying this optimisation and this quantity after it has been ap-
plied. For instance, the top left cell shows “on avg. ×1.53”. This cell appears in the
column entitled “Impact on V ”. This means that, on average, the number of matrix
entries is multiplied by 1.53 when sharing is abandoned in step (0). The cell below
this one shows “on avg. /5.59× 103”. This means that, on average, the number of
matrix entries is divided by 5.59×103 when merging is applied in step (1). This cell
also contains “up to /9.04×104”, which indicates that, in some cases, the number of
matrix entries is divided by 9.04×104. Naturally, the impact of an optimisation grows
as grammars grow larger.

The second line of Table 5.1 shows that merging alone has a dramatic impact.
The last two lines show that reordering and sharing both allow reaping an additional
(albeit much smaller) performance improvement. The cumulative effect of all four
steps can be computed by multiplying the factors shown in each column.

Interestingly, reordering slightly increases the number of matrix entries on aver-
age, as indicated by the number “ / 0.89” in the third line of the first column. Indeed,
what is optimised is not the total size of the matrices that are being multiplied, but
the number of elementary operations required for the multiplications. One can see,
on the third line in the second column, that reordering has a positive impact on the
parameter E .

5.8 Related Work

The reachability problem that we consider seems closely related to a shortest paths
problem, which is well-known to be expressible in terms of cost matrices (Lehmann,
1977). It may be possible to reduce our reachability problem to a shortest paths
problem in a suitably constructed graph. We have not attempted to do so; instead,
we have expressed the reachability problem directly in terms of cost matrices, and
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we have proved that the equations characterising these cost matrices (§5.3) can be
solved by using Knuth’s generalisation (Knuth, 1977) of Dijkstra’s algorithm.

We speed up this naïve algorithm by remarking that, in the specific setting of
the LR(1) reachability problem, many rows and columns of the cost matrices can
be merged, letting us compute much smaller “compact cost matrices” (§5.4). Sev-
eral additional optimizations help improve the algorithm’s performance in practice
(§5.6).

Pottier’s reachability algorithm (Pottier, 2016) seems related to the naïve algorithm
that we have described: indeed, it uses a priority queue, very much in the same
way as Knuth’s algorithm (Knuth, 1977), to compute and process a set of reachab-
ility facts. Its presentation, however, is not matrix-based, and it does not have the
ability to handle several terminal symbols together, as an equivalence class: each
reachability fact concerns just one terminal symbol.

The LR(1) reachability problem can be considered a special case of the reach-
ability problem for pushdown systems, which has been thoroughly studied, as it has
many applications in model-checking and in program analysis (Bouajjani et al., 1997;
Esparza et al., 2000; Lal and Reps, 2006; Reps et al., 2005; Suwimonteerabuth et al.,
2006). Although our merging technique is probably specific to LR(1), it would be
interesting to draw a detailed comparison with this line of work.

Minamide and Mori (2012) formalise an HTML5 parser as a conditional push-
down system (Li and Ogawa, 2010), that is, a pushdown system extended with the
ability to test whether the stack matches a regular expression. They propose a new
reachability algorithm, based on earlier algorithms by Bouajjani et al. (1997) and Es-
parza et al. (2000). They use this algorithm to prove that certain branches in the
parser’s code are dead, to prove that the parser never attempts to pop an item off an
empty stack, and to generate a set of input sentences that achieves good coverage
of the parser’s code and can be used for testing the HTML5 parsers found in indus-
trial browsers. Although their work is similar to ours in its motivation, the HTML5
parser they consider is different from (and more complex than) an LR(1) parser. As a
result, their algorithm is more costly: a 438-line fragment of the HTML5 grammar is
analysed in 82 minutes.

By speeding up the computation of the reachable states in an LR(1) parser, our
algorithm makes Jeffery’s approach to error diagnosis (Jeffery, 2003) more scalable.
Indeed, as argued by Pottier (2016), this approach requires computing which error
states are reachable and which (minimal) erroneous input sentences lead to these
states. As a grammar evolves over time, the maintainer of the grammar must re-
compute this information over and over. In order to achieve a smooth edit-compile-
debug cycle, a fast reachability algorithm is required. Although Pottier (2016) suc-
cessfully applies this technique to the CompCert C parser, his algorithm requires
several minutes to process somewhat larger grammars, such as the OCaml grammar,
which our algorithm handles in half a second, and is unable to process much larger
grammars, such as the C++ grammar (Hashimoto, 2021) that our algorithm handles
in a little less than a minute.

A broad survey of error diagnosis techniques, and of the quality of the diagnostic
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messages produced by various techniques and tools, is offered by Becker et al. (2019).

5.9 Conclusion

We present a new algorithm for the reachability problem in LR(1) parsers. This al-
gorithm vastly outperforms the state of the art, which, as far as we know, is repres-
ented by Pottier’s algorithm (Pottier, 2016). We have not proved the correctness of
our algorithm, but we have implemented it in the Menhir parser generator Pottier
and Régis-Gianas (2021) and have experimentally verified, using a test suite of 390
grammars, that it produces the same results as Pottier’s earlier algorithm.

We expect our new algorithm to make Jeffery’s approach to error diagnosis (Jef-
fery, 2003) more scalable. Furthermore, we believe that a fast reachability algorithm
has many potential applications beyond computing the reachable error states. In
the future, we wish to investigate its application to more powerful error diagnosis
schemes, to error recovery, and to syntactic completion.



Chapter 6

Static analyses

In this chapter, we refine the concepts of viable stacks and reduction automata to
precisely characterise the stacks reachable by an LR(1) parser. Our procedure begins
with a target state and grows a suffix of such reachable stacks. For each stack suffix,
we identify the lookahead symbols that cause parsing failure. Additionally, for re-
porting purposes, we can generate sentence prefixes leading to these configurations.

By composing these tools, we introduce two static analyses aimed at enhancing
error messages for LR grammars:

• Enumeration: This method generates a finite set of invalid sentences capable
of exercising all reduce-filter patterns.

• Coverage Analysis: This checks whether an error specification adequately cov-
ers all failing configurations that can be reached by the parser (in other words,
all invalid inputs are given at least one explanation).

6.1 Failing Configurations

In Chapter 2, we introduced the set of viable stacks by enumerating paths in the
LR(1) automaton and used it to construct the reduction automaton RA, which enu-
merates the sequences of reductions applicable on a viable stack. However, if the
LR(1) automaton was pruned to resolve conflicts, these viable stacks can be over-
approximations; some viable stacks and their associated sequences of reductions
might not be reachable in practice.

We leverage the reachability analysis from Chapter 5 to refine the set of viable
stacks and the reduction automaton. This refinement yields the reachable stacks
and the reachable reductions automaton, which accurately capture the behaviours
of an LR(1) parser with truncated actions.

6.1.1 Reachable Stacks

When compiling an LRGrep expression to an automaton, we used the viable stacks
twice: to construct the reduction automaton and then to derive only the subset of

120
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the automaton covering the stacks. The over-approximation is fine in these contexts
since it only leads to a marginally bigger automaton. For a static analysis, we need an
exact enumeration to avoid reporting uncovered cases that are actually unreachable.

Using the cost matrices of the reachability analysis, we can remove the viable
stacks that are unreachable. The graph of reachable stacks RS is a directed graph
which refines the graph of the LR(1) automaton by pairing each state with a class
of lookahead terminals and removing the transitions which cannot be taken for the
source and target classes.

There is an initial node written Initial and the other nodes are pairs (s,c) of an
LR(1) state s and a class c ∈ first(s). There is an edge (s,c) −→RS (s′,c ′) when there is
a transition s

x−→ s′ in the LR(1) automaton and the reachability analysis determined
that taking this transition with these classes has a finite cost. Formally, RS is the least
graph satisfying:

1. (s0,T ) ∈ RS, the initial LR state is injected into the graph

2. for each (s,c) ∈ RS, we have (s′,c ′) ∈ RS and an edge (s,c) −→RS (s′,c ′) if there is
a transition s

x−→ s′ in the LR automaton, if c ′ ∈ first(s′), and if the cost is finite:(
ccost(s, x) ·coerce(follow(s, x),first(s′))

)
c,c ′ <∞

The reachable stacks are obtained by taking the paths of RS starting from the
initial node (s0,T ) and projecting each node (s,c) on s, the LR state it refines.

Since all nodes are reachable from the initial node, the graph of reachable stacks
can also be visited backward. Starting from any node and visiting predecessors until
reaching the initial node produces a reachable stack in reverse.

6.1.2 Reachable Reduction Automaton

By intersecting the reduction automaton RA with reachable stacks RS, we obtain a
non-deterministic automaton enumerating suffixes of reachable stacks and the se-
quence of reductions applicable to them. We write NRA for this construction but ul-
timately, we are interested in its determinisation RRA, the reachable reduction auto-
maton.

A state is a pair (r, v) ∈ NRA ⊆ (RS∪ {Initial})×RA, and (Initial,Initial) is
the initial state. The transitions are of three forms:

1. (Initial,Initial)
s−→ ((s,T ), v) for s ∈ Wait, (s,T ) ∈ RS and Initial s−→RA v

2. ((s1,T1), v1)
s2−→ ((s2,T2), v2) iff there is a transition (s2,T2) −→RS (s1,T1) in RS and

a transition v1
s2−→RA v2 in the reduction automaton1

3. ((s1,T1), v1)
ϵ−→ ((s1,T1), v2) iff there is a transition v1

ϵ−→RA v2

1Or a transition v1
_−→RA v2 when using the wildcard optimisation (see 2.4.1)
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Since we are interested only in analysing the stacks of a waiting parser, we restrict
the initial transitions to those reaching Wait states. The class of a wait state is always
T : if s ∈ Wait, we have first(s) = {T } by equations 5.4 and 5.6 because a wait state
is either initial or has a terminal as incoming symbol. The other transitions are the
transitions of RA restricted to reachable stacks.

We obtain RRA ⊆ P (NRA) by applying the subset construction to determinise
NRA and we write R0 = {(Initial,Initial)} for the initial state.

Simulated Suffixes Paths of the RRA starting from R0 represent exactly the stack
suffixes reachable by sequences of reductions starting from a waiting parser. Given a
path:

• The labels annotating the transitions give the suffix as a sequence of LR state
starting from the top of the stack.

• States in the path track the applicable reductions or the status of ongoing re-
ductions.

A state q ∈ RRA is a set of NRA states, each of them tracking a different sequence of
reductions. States of the form (r,Suffix(s,~s′,T ′)) are particularly interesting. They
represent the configurations in which an LR parser has to decide which action to
take, while the current state is determined to be top(s~s′) and the looking ahead sym-
bol belongs to T ′.

Definition 25 (Stack Suffixes) We write suffixes : RRA → P (Suffixes) for the suffix
states in an RRA state:

suffixes(q) = q ∩Suffixes
Suffixes = {

n ∈ NRA
∣∣ ∃r, s,~s′,T ′,n = (r,Suffix(s,~s′,T ′))

}
Given s ∈ Suffixes, we define the projections suffix and lookaheads:

suffix(r,Suffix(s,~s′,T ′)) = s~s
lookaheads(r,Suffix(s,~s′,T ′)) = T ′

In non-initial NRA states, the first component r is a node of RS from which one
can enumerate all stack prefixes that complete the suffix into a reachable stack.

Definition 26 (Stack Prefixes) We write prefix : NRA * RS and prefixes : RRA →P (RS)
for the projection of RS nodes from NRA and RRA states, defined as:

prefix(r,_) = r
prefixes(q) = ⋃

n∈q
prefix(n)
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Connection to the reduction relation The suffix of a state q is made up of the last
state consumed from the stack being recognised followed by the simulated suffix (the
states pushed by following the goto transitions of the simulated reductions).

We can connect this to the reduction relation introduced in 2.2.2. If (α)β ↓ γ then
there is a reachable state q ∈ RRA with a suffix s ∈ suffixes(r ) such that:

• there is a path p in RS reaching prefix(s) such that incoming(p) =α

• there is a path p ′ in RRA from R0 to q such that incoming(p ′) =β

• γ= incoming(tail(suffix(s)))

The symbols lookaheads(s) are not directly connected to the reduction relation,
but they tell us that the LR automaton realises the actions described (reducing a stack
from αβ to αγ) when looking ahead at any symbol in lookaheads(s).

Connection to reduce-filter patterns A reduce-filter pattern [γ/I ] matches exactly
the stacks with a suffix reaching the states q ∈ RRA such that ∃s ∈ suffixes(q) satisfy-
ing:

γ= incoming(tail(suffix(s)))∧ I ⊆ items(top(suffix(s)))

6.1.3 Failing lookahead symbols

A failing configuration is a pair of a stack and a lookahead symbol that causes the LR
parser to reject the input. The rejection might not happen immediately: the parser
sometimes has to reduce a few productions before reaching a state that rejects the
lookahead symbol.

Definition 27 (rejected lookahead symbols) We write reject(s) for the terminals that
cause an LR parser in state s to reject, and generalise the definition to RRA states:

reject(q) = ⋃
s∈suffixes(q)

reject(top(suffix(s)))∩ lookaheads(s)

The rejections of an RRA state are defined by looking for any suffix reached in this
state and intersecting the rejections of an LR parser with this suffix by the lookaheads
that permitted reaching it.

Indirect rejections The lookahead symbols rejected when reaching state q are given
by reject(q). However, for a given sentence, different sequences of reductions can be
exercised depending on the lookahead token, possibly delaying the time at which a
rejection is detected.

Consider a path R0
s1−→ q1

...−→ qi
sn−→ qn in the reachable automaton. It captures

the behaviours of LR parsers whose stack ends in sn . . . s1. When looking ahead at a
terminal a ∈ T , an LR parser might reject immediately, in which case a ∈ reject(q1),
or engage in reducing some production, in which case the rejection is detected in
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some state qi , for 1 < i ≤ n. The lookahead symbols that are guaranteed to fail for
this path are given by

⋃
i

reject(qi ).

Now, let us look at what this means for a reduce-filter pattern. We observed that
it can be interpreted as a subset of states q̄ ⊆ RRA. The lookahead symbols that can
make the pattern fail are not only those immediately rejected, reject(q) for q ∈ q̄ ,
but also all those rejected by paths containing a state in q̄ . We reason about these by
collecting, for a state q , the lookahead symbols rejected on at least one path reaching
q from the initial state, and those rejected on at least one path leaving q .

Definition 28 (reject-before and reject-after) reject-before(q) and reject-after(q) are
the least functions satisfying:

reject-before(q) = reject(q)∪ ⋃
q ′ s−→q

reject-before(q ′)

reject-after(q) = reject(q)∪ ⋃
q

s−→q ′
reject-after(q ′)

The failing lookahead symbols of state q are then reject-before(q)∪reject-after(q).
For a reduce-filter pattern mapping to q̄ , they are

⋃
q∈q̄

reject-before(q)∪reject-after(q).

Normalisation of rejected lookaheads Optimisations of the LR automaton, not-
ably for compressing the transition table, are allowed to delay rejections, which can
make reject and reject-before pessimistic. Consider a lookahead symbol not rejec-
ted on a path R0

...−→ qi , but rejected on all possible continuations.
reject and reject-before are correct in that no failing lookahead symbol is missed,

but some failing symbols might be detected later.
It is possible to detect these delayed rejections using the least solution to:

delayed-reject(q) = (T /shift(q))∩ ⋂
q

s−→q ′
delayed-reject(q ′)

where shift(q) is the set of terminals shifted in the LR configuration described by q :

shift(q) = ⋃
s∈suffixes(q)

{
a ∈ lookaheads(s)

∣∣∣ ∃s′, top(suffix(s))
a−→S s′

}
A rejection is delayed if the lookahead is not shifted in the current state nor in any of
the states reached by reducing.

When working with an automaton on which such optimisation has been applied,
taking delayed-reject instead of reject marginally improves the output of static ana-
lyses by detecting rejection earlier in a path. This permits to produce shorter ex-
amples to illustrate a failing case to the end-user. In particular, using delayed-reject
reverses the effects of the default reduction optimisation2 on failing lookahead sym-
bols.

2Used, for instance, by Menhir, Yacc and Bison.

https://www.gnu.org/software/bison/manual/html_node/Default-Reductions.html
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6.1.4 Generating sentences

To report a failure to the end-user, it is nice to produce a sentence illustrating the
problem.

Given a path in RRA and a lookahead symbol a rejected on this path, we want to
produce an invalid sentence that will cause the LR parser to fail in a configuration
described by this path and lookahead symbol. We start by constructing a matching
LR stack, and then, using the accessibility information, turn this stack into a sentence
ending in a.

The suffix of this stack is directly given by the labels ~s of the transitions of the
path, in reverse. To complete ~s, we look at the last state q of the path. The valid
prefixes are the paths from the initial node of RS to any r ∈ prefixes(q). To obtain
the prefix ~p that expands into the shortest sentence, one can apply a shortest-path
algorithm (Dijkstra, 1959), using the costs of the reachability matrices as weights.

The stack ~p~s can then be translated into a sentence prefix by replacing each state
whose incoming transition is a nonterminal with the shortest sequence of states la-
belled by terminals it expands to, as determined by the cost matrices. Let’s call this
process expand.

The invalid sentence is then incoming(map(expand,~p~s)) ·a.

6.2 Enumeration

The goal of enumeration is to produce a list of minimal invalid sentences that cover
all pairs of a reduce-filter pattern and a failing lookahead symbol.

Let us illustrate with an arithmetic example. In grammar G A, the sentences match-
ing [E /E → T+E · ] can fail for lookahead symbols i , (, and ). While i and ( fail sys-
tematically, ) depends on the context, as shown by these two sentences:

• 1+2 matches the pattern and fails with all three lookahead symbols.

• (1+2 also matches but fails only for i and (.

With this simple grammar, the sentence 1+2 alone is sufficient to cover all failing
lookaheads of [E /E → T+E · ]; with richer grammars, a single sentence per reduce-
filter pattern rarely suffices. However, the second example also covers the pattern
[E /(E → ) · ]: while a single sentence is unlikely to cover all failing lookaheads of a
pattern, it usually covers some lookaheads of multiple patterns.

In light of this example, we can see the production of a small list of sentences
covering all failing lookaheads of all patterns as an optimisation problem—finding
sentences that cover as many cases as possible or focusing on cases that are diffi-
cult to cover first, while balancing the length and number of sentences. Producing
a minimal list of sentences seems computationally hard, but we propose a greedy
approach which has proved sufficient in our tests.

Formally, we aim to produce a list such that, for all terminals a and reduce-filter
patterns [α/I ] that fail when looking ahead at a, there is a minimal invalid sentence
ua such that the prefix u matches the pattern.
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Working state by state A reduce-filter pattern translates to a set of RRA states; if we
cover all RRA states and failing lookahead symbols, all reduce-filter patterns will be
covered too. We consider each q individually, producing enough sentences to cover
failing lookahead symbols, given reject-before(q)∪ reject-after(q).

Let us start by handling symbols in reject-before(q). Each of them is rejected by
a state q ′, possibly q itself, on a path from R0 to q . We generate an invalid sentence
from this path and lookahead symbol, following the procedure from Section 6.1.4.

We still need to cover the lookahead symbols in reject-after(q)/reject(q). By
definition, for each symbol there is a state q ′, reachable from q , rejecting this sym-
bol. We pick an arbitrary path from R0 to q , complete it with a path from q to q ′, and
again generate an invalid sentence from this path and lookahead.

Shortest paths We said that, given a source and target state, we picked arbitrary
paths. In practice, one wants paths minimising the length of the sentences. These
are not necessarily the shortest paths because we have to account for nonterminals
expanding into sequences of terminals. As in Section 6.1.4, those can be found by a
shortest-path algorithm using the cost matrices to weight the edges.

Filtering redundant sentences The set of sentences we just described cover all fail-
ing lookaheads for all RRA states, but can be redundant in two ways:

1. Some cases are likely to be covered by multiple sentences, such that some sen-
tences can be removed without affecting coverage.

2. RRA states are too fine-grained; we were looking for reduce-filter patterns to
begin with.

The reduce-filter patterns form a partial order such that [γ/I ] ⊆ [γ/I ′ ] when I ′ ⊆
I . In other words, when more items are required, fewer situations match the reduce-
filter pattern. The minimal elements that recognise at least one sentence are exactly
the [ incoming(tail(suffix(s)))/items(top(suffix(s))) ], for s ∈ Suffixes. Let us call this
set Targets:

• By mapping incoming on the suffix, it identifies the sequence of reductions
producing the same sequence of nonterminals.

• By keeping only the items of the last state, it identifies all LR(1) states that come
from the same LR(0) state.

Each sentence covers one lookahead symbol for one or more Targets, found by
looking at the states in the RRA path used to generate the sentence.

To filter the sentences, we maintain a finite map from Targets to P (T ). Initially,
all sets of terminals are empty. Before outputting a sentence with failing lookahead
symbol a, we add a in the finite map for all Targets reached by the sentence. If they
were already all covered, we omit the sentence.
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Minimality of the solution Filtering sentences is an instance of the set cover prob-
lem, which is NP-hard. Our solution is very naive and depends entirely on the order
in which the candidate sentences are visited but has proved sufficient for our test
cases. Cormen et al. (2009) gives a better and simple greedy algorithm. Better solu-
tions have been deeply researched by the optimisation community (Korte and Vygen,
2012).

But selecting a minimal subset is not sufficient to guarantee an optimal enumer-
ation, as the generation procedure also affects the quality of the solution. There
are multiple ways to improve the set of candidates. By picking the shortest paths
to reject-before and reject-after lookahead symbols, the set favours having more
shorter sentences over possibly fewer longer sentences. When multiple shortest paths
exist, certain might lead to quicker coverage than others. Finally, we generated one
sentence per lookahead, but it can be more efficient and pleasant for the end user to
pair a sentence prefix with all the lookaheads that cause it to fail.

6.3 Coverage

The coverage checker finds the parts of the grammar that are not covered by an error
message. The analysis applies to a deterministic automaton (Q,S,d , q0,F ) that real-
ises an error specification for an LR automaton with initial state s0 ∈ S, as produced
in Chapter 4. Coverage can be checked immediately after determinisation, explor-
ation or minimisation. It is done by looking for fallible stack suffixes that are not
recognised by the automaton Q. A state is final if it has an accepting continuation:
q ∈ F ⇔∃i , j , qi =■ j .

We write q
s−→Q q ′ iff d(q, s) = q ′.

6.3.1 Fallible stacks

We start by constructing a non-deterministic automaton FS, for fallible stacks, that
recognises the reachable stacks that can fail. They generally coincide with the reach-
able stacks, except if in some configurations, the LR automaton rejects none of the
terminals.

The states FS are pairs in (RS]RRA)×P (T ). The first component is the disjoint
union of the reachable stacks and the reachable reduction automaton; the second
component tracks the rejected lookahead symbols. Tracking the rejected lookahead
symbols is not strictly necessary for checking coverage but is convenient to inform
the user, when an uncovered sentence has been found, of the lookaheads that cause
it to fail.

The initial state is ((Initial,Initial),;), representing a configuration in the
initial state of RRA when no lookahead symbol has been rejected yet. For each trans-
ition (Initial,Initial)

s−→RRA r such that reject-after(r ) 6= ;, there is a transition:

((Initial,Initial),;)
s−→FS (r,reject(r )).

The transitions for the other states r ∈ RR A are as follows:
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• If there are no transitions leaving r in RRA, e.g. Øs,r ′,r
s−→RR A r ′, then for each

p ∈ prefixes(r ) there is a transition:

(r,T ′) ϵ−→FS (p,T ′)

This handles the case of reaching the end of the sequence of reductions ap-
plicable to a stack suffix by switching to enumerating all prefixes of reachable
stacks ending in p.

• Otherwise for each transition r
s−→RRA r ′ there is a transition:

(r,T ′) s−→FS (r ′,T ′∪ reject(r ′))

if T ′ 6= ; or reject-after(r ′) 6= ;. That is, either we have found lookaheads that
are rejected or there are some lookaheads that can still be rejected.

For prefixes p ∈ RS, the transitions are reversed: if p ′ −→RS p, then:

(p,T ′)
π1(p ′)−−−−→FS (p ′,T ′)

This edge is labelled by π1(p ′), which is the state at the top of the stacks described by
p ′ in RS.

Paths in FS follow reductions that can fail, accumulate the rejected lookaheads
and switch to enumerating stack prefixes at the end of reduction sequences.

6.3.2 Intersecting with fallible stacks

Coverage is determined by intersecting Q and FS, looking for transitions that are
defined only in FS.

We construct the intersection as the least graph with states I ⊆ FS×Q such that
i0 = (((Initial,Initial),;), q0) ∈ I and for each ( f , q) ∈ I :

• If q is final, there are no transitions; we have reached an accepting state of Q,
the configuration described by f is covered on this path.

• If q is not final and f
ϵ−→FS f ′, then ( f ′, q) ∈ I and ( f , q)

ϵ−→I ( f ′, q)

• If q is not final and f
s−→FS f ′:

– if Øq ′, q
s−→Q q ′ or, if ∃q ′, q

s−→Q q ′, s = s0∧q ′ ∉ F , we have found a transition
from f labelled s that is not covered by q

– otherwise, ( f ′, q ′) ∈ I and ( f , q)
s−→I ( f ′, q ′) where q

s−→Q q ′

The two cases for non-covered transitions are either if the transition is missing,
Øq ′, q

s−→Q q ′, or if the transition exists but is labelled by the initial LR state s0 and
reaches a non-final state, q ′ ∉ F . The initial state is the bottom of the LR stack, so the
scan ends here, but no message has been found yet. This situation can happen when
the error automaton Q is built with a sink state, consuming all states until the end of
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the stack without accepting, or as a by-product of optimisations for compacting the
automaton (e.g. minimisation of wildcard transitions).

When discovering an uncovered transition f
s−→FS f ′ from a state ( f , q), we can

construct an example to report to the user. The labels along the path from i0 to ( f , q)
give a stack suffix, which can be completed by generating a prefix from π1( f ′) (the
target of the transition), following the same recipe as in Section 6.1.4.

The lookahead symbols that caused the suffix to fail are given by π2( f ), which
can be empty. In this case, π1( f ) ∈ RR A and the lookaheads potentially causing fail-
ure are reject-after(π1( f )). The suffix is too short to determine the exact failure. By
following outgoing transitions of f ′, it can be completed to a more specific suffix
guaranteed to fail.

We can also report the reduce-filter patterns that would solve the issue to the
user. For this we look for the suffix states in suffixes(π1( f ′)) or suffixes(π1( f ′′)) for all
( f ′′, q ′) on paths from i0 to ( f , q).

A suffix s can be turned into a reduce-filter pattern:

[ incoming(tail(suffix(s))) / items(top(suffix(s))) ]

If the reduce-filter pattern appears on all paths reaching ( f , q), handling it is guaran-
teed to solve the issue. If it appears only on some paths, only some of the cases will
be covered. A more sophisticated reporting could suggest examples specialised for
the different cases.

Dead clauses and patterns The analysis can also be used to find unreachable pat-
terns and clauses. This is done by exploring I and looking for clauses that are accep-
ted on no paths. Reporting unreachable clauses proves very valuable in keeping an
error specification synchronised with an evolving grammar.

A refinement of the approach is to also report sub-patterns that do not contribute
to any new case being covered. This happens particularly with branches, e.g. (e1|e2)
when all cases matching e2 are covered by a clause of higher priority. Our imple-
mentation tracks symbol patterns x and reductions as the unit “of contribution”: a
symbol pattern or a reduction that do not contribute is reported.

6.4 Conclusion

In Chapter 2, we saw that paths in the LR automaton could be used to enumerate
LR stacks and derived the viable reduction automaton to reason about possible se-
quences of reductions. Unfortunately, this enumeration is an over-approximation if
the actions of the LR automaton were truncated by conflict resolution.

Chapter 5 developed an efficient strategy for characterising the impact of trun-
cation on the reachability of LR configurations. This chapter uses that result to enu-
merate failing configurations and suggests two applications:

• Enumeration: Produces a set of invalid sentences illustrating the ways in which
grammar constructions can be misused.
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• Coverage: Takes an error specification and finds invalid sentences that lack an
error message.

Although we have not proven this result, both methods always terminate and are
sound and complete. They do not report failures that are unreachable and do not
miss any reachable failures. The enumeration reports all the reduce-filter patterns
that can be covered. If coverage analysis does not find any uncovered sentences, the
error specification covers all possible errors.



Chapter 7

The LRGrep implementation

7.1 From the calculus to an implementation

In this chapter, we explore the practical implementation of the calculus, address-
ing real-world scenarios that benefit from extensions of our matching language. We
introduce features like constraints on lookahead symbols and user-provided predic-
ates, which were not covered in the theoretical framework. We then present the tools
provided by the implementation of LRGrep and the concrete syntax of LRGrep files.

7.1.1 Predicated clauses

In the calculus, the applicability of a clause is entirely determined by the pattern.
In practice, we found two situations in which it is desirable to refine this behaviour:
conditioning clause application on certain lookahead terminals or on a user-provided
predicate. We did not introduce these subtleties earlier as they do not directly affect
the theory we developed.

The general syntax for clauses has the form:

clause ::= pattern (@ lookaheads∗)? %partial? { action }
lookaheads ::= a | first(A)

The two fixed parts of the clause are still the pattern and the semantic action, but
they can be complemented with an optional lookahead specification and an optional
%partial qualifier.

The lookahead specification is a set of terminals. If present, it restricts the clause
to apply only when the parser fails while looking ahead at one of those terminals.
Terminals are specified directly by giving their names or by using the syntax first(A)
which denotes the set of all terminals that can appear at the beginning of a word
recognised by a nonterminal A:

first(A) = {a ∈ T | ∃w, a ·w ∈L (A)}

If the %partial qualifier is present, the semantic action is allowed to give up. It
evaluates to an option. If this optional result is Some(v), it behaves like a normal

131
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action evaluating to v . If it is None, the clause does not apply and matching resumes,
looking for the next candidate.

We say that a clause is total if it is not %partial and has no lookahead specifica-
tion; otherwise, it is non-total.

Impact on LRGrep’s pipeline This change affects two parts of the compiler. First,
when reaching an accepting state for a non-total clause, we no longer prune the con-
tinuations with lesser-priority because these might contribute reachable candidates
if the clause does not succeed. Second, an accepting state can have more than one
clause associated with it. Previously, if multiple clauses succeeded at the same time,
only the one with the highest priority was retained. Now, the total clause with the
highest priority and all the non-total ones with higher priorities are retained.

During execution, an LRGrep-automaton produces a list of candidates from the
stack, at most one per clause. The candidates are ranked according to the clause
priority and tried in order until a successful candidate is found.

Impact on coverage analysis

The main impact is on the coverage analysis. Partial clauses can simply be ignored
by the analysis. We do not make any assumptions about the semantic action, so
the conservative approximation is that a partial clause always gives up and does not
contribute to coverage.

However, the analysis can be refined to account for lookahead specifications. In
the original definition of coverage analysis, accepting states were provided as a sub-
set F ⊆Q. Traversal stopped when reaching an accepting state q ∈ F .

Acceptance is now modelled as a function accepted : Q → P (T ), indicating the
lookahead terminals accepted by this state. accepted(q) is defined as the union of
the lookahead specifications of all clauses accepted in state q ; a total clause handles
all terminals.

The construction of the intersection I is augmented to accumulate the handled
terminals: I ⊆ FS×Q ×P (T ). A state is now a triple ( f , q,h); in the initial state, h is
accepted(q0). A transition ( f , q,h)

s−→ ( f ′, q ′,h′) is such that h′ = h ∪accepted(q ′).
Transitions are followed until reaching a state ( f , q,h) such that:

reject-after(π1( f ))∪π2( f ) ⊆ h

reject-after(π1( f )) lists the lookahead symbols that can still fail in some transitive
successors, while π2( f ) are the lookahead symbols that have already failed. If all of
those are in h, all possible failures in this suffix have been handled.

Similarly, when reporting a non-covered transition, the failing lookahead sym-
bols are (π2( f )∪ reject-after(π1( f )))/h.

7.1.2 Multiple entry points

The work we presented assumes a grammar with a single start symbol and an auto-
maton with a single initial state. In practice, parser generators support more than
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one entry point, to define multiple languages that share common definitions.
For instance, ML languages have interface and implementation files which are re-

cognised by two different entry points but otherwise share common constructions.
Some languages have a batch compiler and an interactive interpreter which recog-
nise slightly different dialects.

A grammar author might want to provide different error messages for the dif-
ferent cases. The analyses we introduced can easily be adapted to work on specific
entry points by applying them on the subset of the automaton reachable from the
corresponding initial states. The wait states, the enumeration of viable stacks, and
therefore the reduction automata and the reachable stacks directly depend on the
set of states considered.

7.1.3 Integration with OCaml

The reference implementation of LRGrep works with the OCaml programming lan-
guage; therefore, the pieces of code are expected to be valid OCaml code:

• Identifiers in an LRGrep specification should follow OCaml lexical rules.

• The specification can contain initialisation code which is interpreted as a piece
of an OCaml structure.

• Semantic actions should be valid OCaml expressions.

The semantic actions of all clauses should have the same type—wrapped in an
option for partial actions. In the generated code, LRGrep uses pattern matching
to extract information from the stack and paste the code of semantic actions in the
branches.

Portability across languages and parser generators

The compilation process is parameterised by the LR automaton being analysed, but
is otherwise similar to the generation of a lexer from a specification: a specialised
compiler takes the description and translates it into a program in a general-purpose
language.

The reference implementation consumes the LR automata produced by Menhir,
the reference LR parser generator for OCaml. Besides that, there is nothing specific to
the OCaml language in LRGrep’s design. The compiler can, in principle, be retargeted
to other programming languages and parser generators. The only assumptions are
that the automaton is an LR(1) automaton, and that, at runtime, the parser stack can
be accessed undamaged when the input is rejected.

By undamaged, we mean that the parser stack should be in the state it had after
the most recent shift transition. We expect this to be the main difficulty when porting
LRGrep to another parser generator. High-performance LR implementations make
a destructive use of the stack, and spurious reductions are a natural consequence
of a non-canonical (compressed) automaton. This is unfortunately at odds with our
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approach for producing good error messages: to maximise sharing, the compression
process throws away information prior to detecting an error. This information is ir-
relevant when processing valid inputs but can be valuable for assessing the situation
when parsing fails.

Finding implementation strategies suitable for high-performance implementa-
tions and evaluating their impact has been relegated to future work; see 9.5. Mean-
while, our reference relies on Menhir’s support for taking persistent snapshots of a
stack to undo undesirable reductions after a parse error has been detected.

Working with Menhir extensions to LR grammars

Menhir provides two unusual features to help engineer an LR grammar: higher-order
and inlined nonterminals.

Higher-order nonterminals allow writing generic grammatical definitions by ab-
stracting over symbols (including other higher-order nonterminals). This behaves
like a C++ template or macro, where a definition contains named holes that are sub-
stituted by concrete definitions when instantiated. Like C++ templates, the higher-
order nonterminals are compiled by monomorphisation and each instantiation is
given a unique name derived from the actual parameters.

Each occurrence of an inlined nonterminal in a rule is substituted by the different
productions of the nonterminal.

Both features are handled in a pre-processing step by rewriting the grammar
to a plain, first-order, LR grammar. Since LRGrep receives the automaton after it
has been processed by Menhir, it has no knowledge of the higher-order and of the
inlined nonterminals. For higher-order nonterminals, it sees the monomorphised
instances, and treats each of them as a distinct nonterminal. The only change is
that, syntactically, a symbol name can look like a function application. For instance
list(definitions) is the result of instantiating list, a higher-order nonterminal,
at definitions, a plain nonterminal. LRGrep treats it like a normal nonterminal,
as if the grammar author had manually written a list_definitions nonterminal.
Inlined nonterminals have completely disappeared from the automaton. To write
error rules matching situations involving an inline nonterminal, the grammar au-
thor should do the substitution themselves by matching for each expansion of the
nonterminal.

7.1.4 Support for longest-match operators

We observed that allowing extraction of values from the stack makes matching am-
biguous. We are no longer asking only whether a certain pattern matches, but also
how it matches. To solve this problem, we introduced disambiguation rules, impos-
ing an order on the different derivations of the same input.

For the iteration operators, e∗ and [e], the semantics we gave favour the shortest
match: the minimum number of iterations for e∗, and the sequence of reductions
consuming the shortest suffix of the stack for [e]. The implementation features longest-
match variants written e∗∗ and [[e]]. They can be implemented with minor changes:
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• Relying on the disambiguation rules for |, e∗∗ expands to e∗∗ · e|ϵ (whereas e∗

expands to ϵ|e∗ ·e).

• By replacing dC (k, s)¯k ′ by k ′¯dC (k, s) in the derivation of the reduction op-
erator (Figure 3.4, page 72). In this line, dC (k, s) is the continuation to derive
when a match has been identified, while k ′ continues to look for a longer re-
duction sequence. By putting k ′ first, we give a higher priority to the branch
looking for a longer suffix than to the success continuation.

Longest variants do not increase the expressiveness of the language. They are offered
as an option to the grammar author to refine the positions reported in an error mes-
sage. We can give an artificial example on G A to illustrate the case. Let us assume
a situation in which one wants to match and report the position of a factor F in the
input 1+2∗3∗4. With pattern p = [F ], the position reported covers only 4, as it is
the shortest suffix that reduces to a factor; with pattern [[F ] ] the position reported
covers the whole product 2∗3∗4.

7.1.5 Practical usage of variable bindings

The subsequence bound by a variable binding n = e is not directly exposed to the
user. We expect the user to be interested in the semantic values and the source code
locations rather than stack offset.

Following Menhir’s conventions, we provide special syntaxes $startpos(n) and
$endpos(n) to extract the starting and ending position of the sequence that matched.
If e covers a single symbol (e.g., n = x), its semantic value is bound to n.

This covers the two use cases where we found variable bindings to be useful: re-
ferring to a source code location and accessing a semantic value. We did not find any
reason to allow direct access to the stack, though this can be done in principle.

For instance, a concrete implementation for an unclosed parenthesis looks like:

| l=LPAREN; [expr /LPAREN expr . RPAREN] {
printf "Expecting ')' to close the parenthesis opened line %d column %d"

(line $startpos(l)) (column $startpos(l))
}

Reconstructing types To decide at which type a variable should be exposed, we
have to consider two pieces of information:

1. The type of the semantic values that can be bound to this variable, by looking
at the transitions binding it.

2. Whether it is guaranteed to be bound when reaching the semantic action.

For a simple pattern, like n = expr, we know that n is always captured when
matching an expr and that there is no way for the pattern to match without binding
n. In the semantic action, n can be given the type of the semantic values of nonter-
minal expr.
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More problematic patterns are n1 = expr|n1 = pattern or n2 = expr|ϵ. For the
first one, we fall back to an opaque type representing a Menhir stack frame, because
n1 could be bound either to an expr or a pattern pattern. For the second one, we
keep the type of expr but wrap it in an option.

To solve 1., we look at all the transitions where a variable is bound. If all the
transitions that bind the variable are labelled with the same symbol, we give the vari-
able the type of the semantic values of this symbol. Otherwise, we use the generic
stack frame type. For expert users, a few functions are provided to extract informa-
tion from this representation, though we did not find practical cases where this was
necessary.

For 2., we check if the variable is bound on all succeeding paths. If so, we directly
expose the value at the type we have determined in 1. If not, then there is a path from
the initial state to the accepting state which does not go through a transition binding
the variable. In this case, we wrap the type in an option.

Runtime representation During matching, semantic values are stored in registers.
The mapping from a register to a typed variable is done just before executing a se-
mantic action. A register has the most general type: an optional stack frame.

When generating code, we prepend a small prologue to the semantic actions that
extracts the precise representation from the generic one. If we determined that the
variable is bound on all paths, we can unwrap the option (it cannot be None: if this
is the case we abort the computation and signal an internal compiler error). If we
found a more precise type to give to the semantic value, we check that the LR(1)
state of the stack frame matches our expectations, just to be safe, and then cast the
semantic value to the expected type.

More precise types? We could leverage the OCaml type system to degrade the types
more gracefully than directly falling back to the generic stack frame type. For in-
stance, n1 could be given the type [`Expr of ty_expr | `Pattern of ty_pattern].
However, we did not encounter situations where this was useful in practice, or could
not be worked around.

For this example, we suggest rewriting the pattern as ne = expr|np = pattern
which binds the variables ne : ty_expr option and np : ty_pattern option.

7.2 Concrete syntax of LRGrep files

An LRGrep error specification is written in a .mlyl file. Even though the syntax of
patterns almost directly follows from the calculus from Chapter 3, the implementa-
tion has to handle practical details that we did not consider so far, and also features
syntactic sugars to ease writing. We review these differences now and introduce the
surface syntax of .mlyl files.

Figure 7.1 gives the structure of an .mlyl file. It is a sequence of rules with op-
tional heading and trailing blocks of OCaml code wrapped between curly brackets.
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mlyl:
header
rule*
trailer

header: action?
trailer: action?

action: "{" OCaml code ... "}"

Figure 7.1: Structure of an .mlyl file

rule: "rule" ident ident* "="
"parse" "error"? entrypoints? clause*

entrypoints: "(" symbol ( "," symbol )* ")"

ident: ["a"-"z" "A"-"Z" "_"]
["a"-"z" "A"-"Z" "0"-"9" "_" "'"]*

symbol: ident
| ident "(" (symbol ("," symbol)* )? ")"

Figure 7.2: Syntax of LRGrep rules

The heading and trailing code, if present, should be syntactically valid OCaml struc-
tures.

Rules The syntax of rules is given in Figure 7.2. A rule starts with the keyword rule,
followed by a list of identifiers: the mandatory name of the rule and zero or more
formal parameters, delimited by = parse. Identifiers follow OCaml lexical conven-
tions. The error keyword specifies that the rule is meant to apply only to failing
parsers, which is the intended use case for LRGrep. It is nonetheless optional: if the
keyword error is omitted, LRGrep disables the optimisations that make assump-
tions on the configuration of parsers being analysed. The rule can also be restricted
to only certain entry points by specifying them between parentheses; LRGrep makes
use of this information to prune the automaton more aggressively and to prevent
the coverage checker from reporting missing cases reachable only from other entry
points. After that comes the list of clauses.

Grammatical symbols follow Menhir’s conventions:

• A terminal starts with an upper-case letter, like INT.

• A nonterminal starts with a lower-case letter, like expr.

• Instances of higher-order nonterminals use function application notation; they
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clause: ("|" pattern lookahead_constraints?)+
(action | "%partial" action | "{" "." "}")

lookahead_constraints: "@" lookahead ("," lookahead)*

lookahead: terminal | "first" "(" nonterminal ")"

Figure 7.3: Syntax of clauses

start with a nonterminal name followed by a comma-separated list of symbols
between parentheses. E.g., list(INT).

Although in the majority of cases a single rule covering all error messages is suf-
ficient, multiple rules can often be useful to factor information extraction. For in-
stance, syntax error messages of the reference Elm compiler (see Section 8.3) are
sometimes split into two levels of analyses:

• The first, finer-grained, level focuses on the grammatical construction that
failed to parse, such as the current expression or pattern.

• The second level locates the definition in which the failure occurred in the cur-
rent module (e.g., “While parsing function foo” or “Inside type bar”)

To reproduce this behaviour it can be convenient to split the analysis into two rules,
one for extracting the current definition and analysing the local context.

Clauses Figure 7.3 gives the syntax of clauses. A clause is a “|” delimited list of one
or more patterns with optional lookahead constraints ending with an action.
There are three kinds of action:

• Total action: A total action is a piece of OCaml code wrapped between curly
brackets that is executed when the clause matches. The rule ends by returning
the value to which the OCaml code evaluates. This is the most common kind
of action.

• Partial action: Sometimes, semantic information is needed to decide whether
a clause applies or not. LRgrep provides partial actions, specified with the
%partial keyword for this case. In a partial action, the OCaml code should
evaluate to an optional value. When it is None, matching resumes, trying to
recognise a clause with lower priority. When it is Some v, matching ends, as in
the total case, returning v.

• Unreachable action: The syntax { . } is provided to ensure that a clause
never matches. LRGrep checks that this is the case at compile-time. This is
useful for guaranteeing that certain patterns are already covered by clauses
with higher priority.
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base:
| symbol — a specific symbol
| "_" — any symbol
| "[" pattern "]" — reduction to the shortest stack suffix
| "[[" pattern "]]" — reduction to the longest stack suffix

Figure 7.4: Base patterns, can be bound to variable

The lookahead constraints restrict the patterns preceding @ to match only for cer-
tain lookahead terminals. The terminals are specified as a comma-separated list of
names or using the special syntax first(nt).

Patterns The pattern language is decomposed into two syntactic categories: the
“base” patterns, listed in Figure 7.4, which can be bound to variables, and the other
operators from Figure 7.5.

A base pattern can be a single grammatical symbol, a wildcard _ that matches any
symbol or an application of the reduction operator. The rest of the pattern language
contains filters and the usual regular operators: sequence, disjunction, repetition
(Kleene-star), a base pattern that can be bound to a variable, and ϵ, which consumes
nothing.

Filters The base syntax for a filter is a single item but a few shortcuts are provided
for convenience. The shortcuts specify a set of items using a syntax inspired by glob
patterns, which are interpreted as a disjunction of filters for each item.

To understand the set of items denoted by the generalised syntax of filters, it is
simpler to start from the set of all items and keep only those satisfying a series of
constraints:

1. An optional left-hand side symbol. If provided, only items with this left-hand
side are kept.

2. A right-hand side specified as a sequence of symbols, wildcards “_” acting as
placeholders for any symbol, and wildcard sequences “_*” for any sequence of
symbols. Only the items with a matching right-hand side are kept.

3. One or more dots ".", representing the different positions in which a dot is
allowed in the items.
E.g. . a . b . is interpreted as . a b or a . b or a b ..

For instance, a filter /_* . expr . _* matches any item with a dot before or after
an expr, and no constraints on what comes after or before.

https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Glob_(programming)
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pattern:
| — empty pattern, always matching
| "/" filter — item filtering
| (ident "=")? base — binding a variable
| pattern "*" — shortest repetition
| pattern "**" — longest repetition
| pattern "?" — optional pattern
| pattern ";" pattern — pattern sequence
| pattern "|" pattern — pattern disjunction
| "(" pattern ")" — parentheses for disambiguation

filter: ( symbol ":" )? ( "." | "_" | "_*" | symbol )*

Figure 7.5: Operators for composing patterns

7.3 The LRGrep tool

LRGrep is distributed as an OCaml package which provides an lrgrep library and an
lrgrep.runtime library. lrgrep receives a Menhir automaton as an argument and
offers three sub-commands:

compile takes an error specification and produces an OCaml module, and if opted-
in, checks for exhaustive coverage of errors.

enumerate emits a list of sentences covering all reduce-filter patterns.

interpret reads an invalid sentence and produces an annotated stack trace detail-
ing the parser’s configuration at the point of failure.

The Menhir automaton is represented by a .cmly file produced by Menhir when
compiling a grammar with the --cmly flag. The compile command is intended to be
invoked by a build system as part of a larger compilation process, though the cover-
age feature can be used on its own when a developer is working on error messages or
during continuous integration to ensure that error messages are synchronised with
the grammar. The enumerate and interpret commands are provided as tools to
help authoring error messages.

7.3.1 Compiling an LRGrep specification

Integration with Dune The standard build system for OCaml is Dune. It reads
its instructions from dune files that are present in all directories containing OCaml
sources.

Figure 7.6 gives a minimal dune file for compiling an LRGrep specification. Dune
knows about OCamllex and Menhir, so it has built-in directives to automate most
of the work. (ocamllex (modules lexer)) instructs Dune to generate a lexer.ml
module from the lexer.mll specification using OCamllex.



CHAPTER 7. THE LRGREP IMPLEMENTATION 141

(ocamllex
(modules lexer))

(menhir
(modules parser)
(flags :standard --inspection --table --cmly))

(rule
(targets errors.ml)
(deps parser.cmly errors.mlyl)
(action

(run lrgrep errors.mlyl -g parser.cmly -o errors.ml)))
(executable
(name main)
(libraries menhirLib lrgrep.runtime))

Figure 7.6: Compiling an LRGrep specification with Dune

(menhir (modules parser)) does the same to generate a parser.ml module from
the parser.mly grammar.

We have to pass extra flags to Menhir to integrate with LRGrep:

--table produces a parser that uses the table-based interpreter rather than the nat-
ive code backend; this is required to hook LRGrep’s failure handling code.

--inspection produces detailed definitions necessary to interpret the contents of
the stack.

--cmly saves the automaton in the parser.cmly file.

We need to give detailed instructions for building LRGrep specifications. The cus-
tom rule states that invoking lrgrep compile errors.mlyl -g parser.cmly -o
errors.ml produces errors.ml using the parser.cmly and errors.mlyl files.

The last directive builds a main executable linked to Menhir’s and LRGrep’s runtime
libraries.

Integration with a Menhir parser Now that we have an Error module, it must
handle the failures of the parser. This is done by using a custom interpreter for the
Menhir parser, provided by LRGrep.

A normal invocation of Menhir to parse the contents of a buffer lexbuf using the
main entry point with lexer Lexer.token is written:

Parser.main Lexer.token lexbuf

A successful parse returns the semantic value produced by main, while an invalid
input causes the parser to raise an exception. To let LRGrep handle errors using a
rule named error_message, one replaces the invocation with:

Errors.parse_with_error_message
Parser.Incremental.main Lexer.token lexbuf
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This tries to parse the input like before, but the result is now wrapped in a result type:

• A successful parse returns Ok r where r is the semantic value produced by
main.

• When provided with an invalid input, the parser’s configuration is analysed
according to the error specification and Error (Some e) is returned if a clause
applied or Error None if there was no handler for the error.

7.3.2 Understanding a failure with the interpreter

The interpreter can guide the creation of a new error clause from a sample input. It
parses the input and prints a detailed trace of the configuration of the LR parser at
the end of the input or at the first error.

Let us illustrate the workflow using an unclosed parenthesis for arithmetic as an
example. We start the interpreter by providing the Menhir automaton, and we pass
the argument - to read the sample on standard input:

$ lrgrep interpret -g calc.cmly -
main LPAREN INT PLUS INT

The input starts with the name of the entry point followed by the tokens. The inter-
preter has no knowledge of the lexical conventions of the language being analysed,
so the input is provided using the terminal names. This input is a valid prefix and is
consumed until the end; the interpreter then answers:

Parser stack (most recent first):
[ / expr: INT .]

- line 1:21-24 INT
↱ expr
[expr / expr: expr . DIV expr

/ expr: expr . TIMES expr
/ expr: expr . MINUS expr
/ expr: expr PLUS expr .
/ expr: expr . PLUS expr]

- line 1:16-20 PLUS
- line 1:5-15 expr

↱ expr
[expr / expr: expr . DIV expr

/ expr: expr . TIMES expr
/ expr: expr . MINUS expr
/ expr: expr . PLUS expr
/ expr: LPAREN expr . RPAREN]

- line 1:5-11 LPAREN
- line 1:0-4 main

We see that it is possible to reduce the input to an expression in two different ways:
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• Immediately after reading the INT at the top of the stack (reducing expr: INT)

• After reading INT, PLUS, and expr (further reducing expr PLUS expr)

We are interested in the second one, and we can use the reduce-filter patterns printer
by the interpreter to match this specific reduction. To get a non-ambiguous match
it is sufficient to filter for expr : LPAREN expr . RPAREN, the item with the longest
prefix.

We can directly use [expr / expr: LPAREN expr . RPAREN], or bind the pre-
ceding symbol if we want to refer to the location of the opening parenthesis:

lp=LPAREN; [expr / expr: LPAREN expr . RPAREN]

7.3.3 Working with enumerated sentences

Enumeration works by listing sentences that cover the different ways a parser can
fail. Of course, there is generally an infinite number of invalid sentences, so we aim to
cover the reduce-filter patterns and the lookaheads that can make them fail. This is
a finite set that we can exhaustively cover, even though it can require a large number
of sentences. We use the strategy described in Section 6.2 to produce reduce the
number of sentences possible, grouping each sentence with all the lookaheads that
can make it fail.

By limiting the coverage to reduce-filter patterns, many invalid sentences are
considered equivalent. For instance:

• The exact path that led to a failure is not considered. For instance, with OCaml
grammar, let x = 5 when and let x = 5 let y = 6 when are considered equi-
valent. The error is the keyword when, which is not allowed in an expression.
The fact that the second example is preceded by another definition is ignored.

• Two sentences going through the same reductions are considered equivalent,
even if the number of reduction differ; for instance x * 2 if and x * 2 * 3 if
are considered equivalent.

These equivalences reduce the amount of noise with only a slight loss in precision.
In practice, the sentences produced by enumeration are sufficient for covering the
most common syntax errors. It is helpful to get an idea of the possible failures of a
grammar and to start writing an error specification.

The calc example We illustrate the use of enumeration by examining the failures
of calc. It is the hello world of grammars provided as an example by Menhir and
LRGrep to demonstrate their features.

The relevant parts of the grammar are given in Figure 7.7; the complete example
can be found at https://github.com/let-def/lrgrep/tree/master/examples/calc.

Let us analyse the grammar:

$ menhir --table --inspection --cmly calc.mly
$ lrgrep enumerate -g calc.cmly

https://github.com/let-def/lrgrep/tree/master/examples/calc
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%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%%
main: e = expr EOL { e }
expr:
| i = INT { i }
| LPAREN e = expr RPAREN { e }
| e1 = expr PLUS e2 = expr { e1 + e2 }
| e1 = expr MINUS e2 = expr { e1 - e2 }
| e1 = expr TIMES e2 = expr { e1 * e2 }
| e1 = expr DIV e2 = expr { e1 / e2 }
| MINUS e = expr %prec UMINUS { - e }

Figure 7.7: The calc LR grammar

The first lines of output look like:

main INT MINUS @ TIMES RPAREN PLUS EOL DIV # [ /expr: expr MINUS . expr ]
main INT DIV @ TIMES RPAREN PLUS EOL DIV # [ /expr: expr DIV . expr ]
main INT PLUS @ TIMES RPAREN PLUS EOL DIV # [ /expr: expr PLUS . expr ]
main LPAREN INT RPAREN @ LPAREN INT # [ /expr: LPAREN expr RPAREN . ]
...

Each line consists of a valid prefix and its failing lookaheads, formatted as:

<entrypoint> <symbol>* @ <lookahead>* # <reduce-filter pattern>*.

In these examples, the entry point is main, followed by symbols that form a valid
sentence prefix, delimited by @. After that comes the list of lookahead symbols that
cause the valid prefix to fail. For instance, the valid prefix in the first line is INT MINUS
and the invalid sentences are INT MINUS TIMES, INT MINUS RPAREN, INT MINUS PLUS,
INT MINUS EOL, and INT MINUS DIV.

The next two lines illustrate variants of the same issue: writing two consecut-
ive operators (except minus, which is allowed as a prefix operator), or an operator
followed by a closing parenthesis. Enumeration attempts to group related failures
together.

The last part of the line, delimited by #, is a list of reduce-filter patterns matching
the sample sentence. These patterns can be used directly in an error specification,
e.g.:

| /expr: expr MINUS . expr { "Expecting an expression after '-'." }

In more complex cases, multiple reduce-filter patterns may appear on the same
line. These are different targets visited by reduction sequences applicable to the vi-
able prefix. Handling a single pattern is usually sufficient for an example. If one
writes multiple entries in the error specification to handle multiple patterns, the first
one to succeed for any input is retained. This has to be kept in mind when writing
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the specification: the most specific error messages and patterns should be placed
first, to avoid a very generic error message taking precedence over them.

Here are two other lines of output, formatted for better display:

main LPAREN LPAREN INT RPAREN @ EOL
[ /expr: LPAREN expr RPAREN . ]
[ expr /expr: expr . DIV expr

/expr: expr . TIMES expr
/expr: expr . MINUS expr
/expr: expr . PLUS expr
/expr: LPAREN expr . RPAREN ]

main LPAREN INT RPAREN @ RPAREN
[ /expr: LPAREN expr RPAREN . ]
[ expr /main: expr . EOL

/expr: expr . DIV expr
/expr: expr . TIMES expr
/expr: expr . MINUS expr
/expr: expr . PLUS expr ]

They both identify a failure following a closing parenthesis, but they call for dif-
ferent explanations, so the first pattern [/expr: LPAREN expr RPAREN .] should not
be used. Whether another closing parenthesis is allowed depends on context that is
discovered only after reducing expr: LPAREN expr RPAREN. Generally speaking, it is
rarely a good idea to use a reduce-filter pattern with an item ready to be reduced (the
. at the end of the rule); instead, it should be reduced to reveal more context that can
be used to improve the error report.

Here are some possible clauses for these situations:

| pos=[expr /expr: LPAREN expr . RPAREN ]
{ "Expecting a closing parenthesis for expression started at " ^

print_position $startpos(pos) }
| pos=[expr] @ RPAREN

{ "Found a closing parenthesis. \
Expecting a corresponding opening parenthesis at " ^
print_position $startpos(pos) }

Fuzzing a parser with enumeration See our case study of the Elm language in Sec-
tion 8.3 for an advanced application of enumeration. The error specification for Elm
is automatically generated by testing the reference implementation on the output of
the enumeration.

7.3.4 Working with coverage report

Let us take another look at writing error messages for the arithmetic example using
the coverage check. We start from the error specification given in Figure 7.8. It covers
our two guiding examples: a missing integer and an unclosed parenthesis.

To run the analysis, we execute:
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rule error_message = parse error
| / . INT

{ "Expecting an integer" }
| lpos=LPAREN; [expr / _* . RPAREN]

{ "Expecting a closing parenthesis" ... }

Figure 7.8: A tentative specification for the calc grammar of Figure 7.7.

$ lrgrep compile -coverage errors.mlyl -g calc.cmly
...
Sentence 1, failing when looking ahead at [RPAREN;LPAREN;INT]:
- RPAREN

[ /expr: LPAREN expr RPAREN .]
- expr
- LPAREN
- main:

[expr /main: expr . EOL
/expr: expr . DIV expr
/expr: expr . TIMES expr
/expr: expr . MINUS expr
/expr: expr . PLUS expr]

Sentence 2, failing when looking ahead at [RPAREN;LPAREN;INT]:
- INT

[ /expr: INT .]
- main:

[expr /main: expr . EOL
/expr: expr . DIV expr
/expr: expr . TIMES expr
/expr: expr . MINUS expr
/expr: expr . PLUS expr]

...

LRGrep reports two viable prefixes that cause the parser to fail when looking ahead
at RPAREN, LPAREN or INT, annotated with reduce-filter patterns to cover these cases.
The two sentences are actually two instances of the same issue: invalid continuations
of expressions that are not handled. We complete the coverage by discriminating on
the lookahead terminal:

| [expr] @ LPAREN { "Unexpected '('. Maybe you forgot to add an operator?" }
| [expr] @ INT { "Unexpected integer. Maybe you forgot to add an operator?" }
| [expr] @ RPAREN { "This closing parenthesis does not match any opening \

parenthesis" }
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Conclusion

In summary, this chapter has provided a comprehensive overview of the implement-
ation details and practical considerations for using LRGrep. From the refinement of
clause applicability to the integration with OCaml, we have covered the essential as-
pects that enable effective error specification and analysis. The tools and techniques
discussed here should equip users with the knowledge needed to leverage LRGrep
for developing robust and user-friendly error messages in their parser generators.



Chapter 8

Case studies

LRGrep was applied to the parsers of three programming languages, each application
illustrating a different approach.

The first two languages, OCaml and Catala, already have parsers written using
Menhir.

OCaml served as the primary experience guiding the design of LRGrep. We de-
veloped error messages from scratch with the objective of addressing problematic
examples reported by the language’s user community.

Catala utilised Menhir’s existing error message infrastructure. This provided an
opportunity to stress-test the reduce-filter pattern dialect and work on compatibility,
since nearly all of Menhir’s error messages can be automatically imported. While the
patterns themselves could be generated automatically, we manually ordered some
clauses as this process is not yet fully automated. We refined the order until the be-
haviour matched that of the reference parser.

Elm is a widely recognised general-purpose programming language known for
the quality of its error messages. Its parser was written by hand with the aid of a
Haskell-based parsing combinator library, providing specialised primitives for hand-
ling syntactic errors.

Our approach to Elm aimed at automatically generating an error specification
replicating the behaviour of the reference parser. The initial goal was to validate
LRGrep’s expressiveness by having a declarative specification produce error mes-
sages comparable in quality to those produced by a hand-written parser recognised
as state-of-the-art. A secondary objective was to demonstrate the utility of our enu-
meration concept, showing that LR grammars could be used to test an existing ana-
lyser and automatically generate an error specification while treating it as a black
box.

In summary:

• Manually crafting high-quality error messages for OCaml

• Testing compatibility with Menhir’s approach in Catala

• Matching the quality of an established implementation and leveraging declar-
ative specifications for automation in Elm

148
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1. let x = 1 in print_int x
2. let x = 1
3. let y = print_int x;
4. let z = 2 in
5. x + z

Figure 8.1: Correct but confusing OCaml constructions

8.1 OCaml

OCaml (Leroy et al., 2019) is a functional programming language. It is the language
in which Menhir and LRGrep are implemented. The reference implementation uses
an LALR(1) parser generated by Menhir from a grammar. This grammar has conflicts
and uses Yacc-style precedence rules for resolution.

A distinctive feature of the OCaml grammar is its limited use of delimiters and
redundant constructions. Most syntactic structures are not explicitly terminated; in-
stead, a definition concludes by beginning a new one. This characteristic often leads
users to inadvertently write programs that generate ambiguous and confusing error
messages. The ambiguity stems from potential misinterpretations in two directions:
an accidental sequence of tokens may be incorrectly parsed as a continuation of the
current definition when the user intended to start a new one, or it may be interpreted
as initiating a new definition when the user’s intent was to extend the previous one.

Figure 8.1 lists correct OCaml code that exhibits some confusing constructions.
When executed, it prints "1" twice and defines the values x to 1 and y to 3.

Line 1 does not define any value: x is local to the expression print_int x. Line
2 defines the value x: just omitting in turns the local variable into a module-level
definition. Syntactically, both constructions share the same let-binding prefix. In
practice, an expression can span many lines, and one must reach the end of the bind-
ings to see whether they are local or module-level.

On line 3, things get trickier. The indentation is intentionally misleading to make
one think that y is bound to the result of print_int x. However, the ; is a sequen-
cing operator, forcing the expression to continue on the following line. The let on
line 4 is let-binding local to the definition of y.

These syntactic choices lead to files with a regular structure and minimal noise
when used correctly. However, when an error occurs—such as placing an in or a ;
in the wrong location—the reported error can be extremely confusing. In practice,
experienced programmers use careful indentation and rely on tools for automatic
indentation. By comparing the proposed indentation of nested constructions with
their intended structure, they are better able to identify and resolve issues.

For reference, other languages generally do not suffer from this problem to the
same extent. C-like languages use braces to make the nesting structure explicit, while
indentation-based languages such as Python, F#, and Haskell visually clarify nested
constructions by requiring deeper indentation for inner structures.

F# is particularly noteworthy because it evolved from OCaml and supports both
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| LPAREN seq_expr error
{ unclosed "(" $loc($1) ")" $loc($3) }

Figure 8.2: A rule of the OCaml parser to report an unclosed parenthesis

| self BAR pattern
{ Ppat_or($1, $3) }

| self BAR error
{ expecting $loc($3) "pattern" }

Figure 8.3: A standard rule to parse a pattern and an error rule to report that a pattern
is expected

syntactic styles. The “light” syntax in F# utilises indentation to mitigate the issues de-
scribed above, whereas the “verbose” syntax remains compatible with OCaml but re-
tains similar problems. Standard ML adopted a different approach by using distinct
keywords for module-level definitions (val and fun) and local definitions (let ...
in ... end), explicitly delimiting them to make the programmer’s intent clearer.

Modifying the OCaml syntax would break too much existing code, but improving
error messages is a feasible and valuable alternative. The development of LRGrep
was driven by these requirements: providing more comprehensive error explana-
tions by considering not only the immediate context but also the broader surround-
ings of an error. This approach aims to account for the path that led to an error and
to utilise indentation to offer more precise diagnostics.

8.1.1 The current situation

Today, syntax errors are produced directly by the OCaml parser using specially craf-
ted rules:

• Either by making some legitimate rules more permissive and rejecting incor-
rect use in the semantic actions

• Or by using the special error symbol to catch unterminated constructions or
common misuses.

However, only some rules can utilise the error symbol due to the rapid introduc-
tion of ambiguities. When multiple error clauses apply to a single situation, which
one should prevail? As a result, most cases are not covered, and the parser defaults
to a generic “Syntax error” message.

Figure 8.2 and 8.3 show how the error symbol can be used to handle an unclosed
parenthesis and how to handle a missing syntactic construction.

Figure 8.4 shows a permissive rule to parse injective type variance annotations.
Only !+ and !- are accepted, but the PREFIXOP terminal represents these and many
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| PREFIXOP
{ if $1 = "!+" then Covariant, Injective else

if $1 = "!-" then Contravariant, Injective else
expecting $loc($1) "type_variance" }

Figure 8.4: A permissive rule to parse injective type variance annotations

more. The lexer could have been refined to distinguish these from other prefix op-
erators, but this would complicate both the lexer and the parser. Instead, all prefix
operators are accepted at the grammar level, and the invalid ones are rejected later.

Incorrect use of Yacc-style error symbol As mentioned in Section 1.7.2, the se-
mantics of the error symbol in Yacc can be surprising. The LR rule handling un-
closed parentheses in older versions of OCaml is a particularly poor example of this
issue, as illustrated in Figure 1.5.

8.1.2 Towards LRGrep-powered error handling

As part of this work, an OCaml parser with LRGrep error handling has been de-
veloped as a fork. The long-term goal is to merge it into the official implementation
once sufficient quality has been attained.

In this fork, all rules involving the error symbol have been removed. More per-
missive rules have been retained for now, but their status may be reconsidered on a
case-by-case basis. Our objective is to centralise syntax error handling in an LRGrep
specification.

Apart from these changes, the patch is relatively small—the primary modifica-
tion involves wrapping the parser invocation to allow LRGrep-generated handlers to
manage errors. We also specialised the LRGrep interpreter presented in Section 7.3.2
to directly consume OCaml files.

The majority of the effort has been dedicated to developing new error messages, a
process largely informed by issues reported by OCaml users. We now examine some
common problems and their translation into LRGrep clauses.

8.1.3 Direct errors

In the analysis of erroneous situations, two distinct categories emerged: direct errors
and complex errors. Direct errors arise from immediate violations of grammatical
rules, such as the omission of a necessary delimiter or the incorrect use of a keyword.
Complex errors, on the other hand, result from unexpected combinations of oth-
erwise grammatically correct constructions, making it difficult to pinpoint a single,
clear cause.

This section focuses specifically on general errors, which can be systematically
identified by adhering to the structure of the grammar. These errors exhibit a pre-
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dictable pattern: “if stuck in this position, suggest this solution”, where “position”
can be as simple as a grammatical item.

The error messages generated by the current OCaml implementation fall into this
category. Similarly, hand-written recursive descent parsers often produce errors of
this type. When such parsers are unable to identify an expected construction, they
naturally report this expectation. This aligns well with the control flow utilised in
direct-style LL parsers, which are typically implemented as mutually recursive func-
tions. Each function recognises a specific construction but operates without know-
ledge of the broader context.

Unterminated constructions

Error handling within the if-then-else construct serves as a case study to illustrate our
approach, which can be generalised to other grammatical structures. The integration
of error rules into existing grammars adheres to a systematic methodology:

• Examine the syntactic structure and identify potential points for relevant error
messages.

• Prioritise these potential errors to ensure that the most critical issues are ad-
dressed first.

• Utilise the enumeration mechanism to address overlooked or missing cases.

In OCaml grammar, if-then-else is represented by two rules:

| IF ext list(attribute) seq_expr THEN expr
| IF ext list(attribute) seq_expr THEN expr ELSE expr

The ext and list(attribute) symbols are advanced use cases. They are nullable
and can safely be ignored in the error messages.

During parsing, errors may occur at various stages: immediately following an IF,
preceding a THEN, among others. Each of these scenarios is modelled by filtering the
corresponding item, with patterns of the form [_* / α . β]. These patterns can be
read as “situations where α . β is effective after following any sequence of reduc-
tions (the _* in brackets)”.

The reduction part is not necessary for items in which the dot is positioned im-
mediately after a terminal, e.g., / IF . _* | / IF _* THEN . _*. A reduction cannot
produce a terminal, so in these cases _* would only match the empty sequence. But
when the dot is after a nonterminal, this pattern lets LRGrep find the appropriate se-
quences, automatically reducing the nullable nonterminals; when unsure, [_* / . . .]
is guaranteed to match as many situations as possible.

Figure 8.5 shows clauses to produce syntax errors when stuck after an if-then-else
keyword. Even though the patterns are simple, wording the error messages requires
setting some conventions upfront. Reminding the user of the syntax assumes that
some concise notations for communicating the formal syntax have been established.
And in case of ambiguity, should we remind the common prefix if . . . then . . . or
hint that else . . . is also possible? In any case, the error message should not be too
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| / IF . _*
{ "Expecting an expression after 'if'.\n\

The syntax is 'if <expression> then <expression>'." }
| / IF _* THEN . _*

{ "Expecting an expression after 'then'.
The syntax is 'if <expression> then <expression>'." }

| / IF _* ELSE . _*
{ "Expecting an expression after 'else'.

The syntax is 'if <expression> then <expression> else <expression>'." }

Figure 8.5: Handling errors after if-then-else keywords

| [_* / IF _* seq_expr . THEN _*]
{ "Expecting 'then' after the expression.

The syntax is 'if <expression> then <expression>'." }
| [_* / IF _* . seq_expr THEN _*]

{ "Expecting an expression.
The syntax is 'if <expression> then <expression>'." }

Figure 8.6: Handling errors between if and then

verbose. It is also worth having a notation to link to a more detailed explanation,
such as a dedicated section in the reference manual of the language.

These questions are not settled. Our work concentrates on demonstrating the
technical feasibility of these fine-grained error messages. Deciding on a uniform
wording for errors for the OCaml grammar is left to future work.

Figure 8.6 adds clauses handling errors happening between if and then. Being
stuck before the else is a bit more contentious: when a suffix of the stack reduces
to IF ext list(attribute) seq_expr THEN expr, a valid if-then has been recognised
and can be reduced. We can mention that else <expression> is a valid continuation:

| [_* / IF _* . ELSE _*]
{ "Expecting 'else' after the expression.

The syntax is 'if <expression> then <expression> else <expression>'." }

But this rule might take precedence over a more relevant rule. For instance, with the
input (if foo then bar, is it more relevant to point to the unclosed parenthesis or
to suggest adding an else? We decided to ignore this case and not report else as a
possible continuation. If one wants to handle a case like this, a way out is to put the
else clause before the unclosed parenthesis one.

An alternative approach is shown in Figure 8.7. A partial rule with side-effects is
used to remember that else is a valid continuation and to decide later which message
is appropriate.
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| [_* / IF _* . ELSE _*]
%partial { else_valid := true; None }
...

| [seq_expr / LPAREN seq_expr . RPAREN]
{ report "Expecting a closing parenthesis";

if !else_valid then report " or an 'else'" }

Figure 8.7: Detecting if-then in unclosed parentheses

Unclosed parentheses

A typical case worth examining is the unclosed parenthesis. We follow a similar ap-
proach as for if-then-else: filtering by items, using the grammar and enumeration to
find relevant cases.

However, the OCaml grammar allows parentheses in many contexts (expressions,
patterns, types, modules, . . . ) and for various purposes: for disambiguation, as in
(1 + 2) * 3, for applicative notation Foo(Bar), or for specialised constructions like
(e : τ :> τ′), a separate rule for the coercion of e from type τ to type τ′.

We use a single clause that catches all these cases:

| lp=LPAREN; _*; [_* / _* LPAREN _* . RPAREN _*]
{ "Unclosed parenthesis at " ^ line_and_char $startloc(lp) }

The pattern is general enough to cover unclosed parentheses in all constructions of
the OCaml language. It works by following all reductions that end up in an item
where the dot immediately precedes a right parenthesis. It then scans the stack for a
left parenthesis whose position is reported in the error message.

A limitation with this approach is that LPAREN and RPAREN must appear literally.
Hiding a parenthesis behind a nonterminal, for instance using lp defined by the rule
lp: LPAREN {...} prevents the pattern from matching.

A rule with multiple sets of parentheses, such as hard-coding the nesting of two
parentheses: LPAREN LPAREN expr RPAREN RPAREN, will also confuse the pattern as it
matches either RPAREN but always captures the location of the rightmost LPAREN on
the stack.

8.1.4 Complex errors

The second category of errors stems from unforeseen interactions between gram-
matical structures. Such errors often arise from partially overlapping constructions.
If distinct contexts recognise marginally different languages, end-users who are ob-
livious to these nuances can easily become confused.

A typical example in OCaml is the first one introduced in this chapter. At the
beginning of a structure1, an expression and a value definition are both valid con-

1A structure defines the body of a module. The structure nonterminal recognises a list of defini-
tions: types, values, sub-modules, etc.
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tinuations. Both can start with a let-binding: terminated with in for the expression
and not delimited for the value definition.

We will examine this and some other examples in detail. The main difference
from the previous category is that these cases were not found by analysing the gram-
mar but through practice. They were brought to our attention by the OCaml user
community—novice students seeking assistance and seasoned users identifying ap-
parent parser limitations.

Despite our tools’ inability to predict such issues proactively, we were pleased
that the pattern language was expressive enough to handle all reported scenarios.
Furthermore, the tooling facilitated the creation of precise patterns from the provided
examples.

Value definitions and expressions

The prototypical example is:

1. let x = 5;
2. let y = 6
3. let z = 7

The upstream compiler rejects this input with the message:

File "sample.ml", line 3, characters 0-3:
3 | let z = 7

^^^
Error: Syntax error

The error is reported on the let on line 3 because it is possible to terminate the let-
binding on line 2 to get a valid expression: let x = 5; let y = 6 in foo. Though it
is more likely that the user did not intend to add ; on line 1. let x = 5 is a valid value
definition, but 5; is an unterminated sequence that expects an expression. We want
to detect this ; and notify the user.

We use the LRGrep OCaml interpreter to get an idea of what a pattern for this
case could look like. The trace is provided in Figure 8.8. The first line indicates that
parsing failed on the let of line 3, as expected. The rest of the output lists the viable
prefix recognised at the point of failure, from right to left.

The top of the stack is too precise for the situation we are trying to identify, so we
look for a relevant reduction, indicated by the ↱ ... lines. The bottom-most one,
let_bindings(ext), is a good candidate: it reduces just before the SEMI we are in-
terested in. The pattern semi=SEMI; [let_bindings(ext)] captures a semicolon that
precedes a well-formed let-binding.

However, a finer-grained pattern is needed for the situation we want to identify.
For instance, the input let () = let x = 5; let y = 6 let ... fails and matches
the pattern, but suggesting to remove ; is incorrect. Without ;, the parser would
expect an in to complete the unterminated expression let x = 5.

We want to report the ; only if omitting it resolves the issue; that is, when the
symbols that precede form a valid definition. A second use of the reduction operator
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$ lrgrep-ocaml-interpreter sample.ml
File "sample.ml", line 3, characters 0-3,
parser stack (most recent first):
- line 2:8-9 INT

[constant: INT .]↱
constant↱
simple_expr↱
expr↱
seq_expr

- line 2:6-7 EQUAL↱
strict_binding

- line 2:4-5 val_ident↱
let_binding_body_no_punning↱
list(post_item_attribute)↱

let_binding_body
- line 2:3-3 rec_flag
- line 2:3-3 list(attribute)
- line 2:3-3 ext
- line 2:0-3 LET↱

let_bindings(ext)
- line 1:9-10 SEMI
- line 1:8-9 expr
- line 1:6-7 EQUAL
- line 1:4-5 val_ident
- line 1:3-3 rec_flag
- line 1:3-3 list(attribute)
- line 1:3-3 ext
- line 1:0-3 LET
- entrypoint implementation

Figure 8.8: Annotated trace of sample.ml’s failure
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$ echo "let x = 5" | lrgrep-ocaml-interpreter
File "<stdin>", line 2, characters 0-0,
parser stack (most recent first):
- line 1:8-9 INT

[constant: INT .]↱
constant↱
simple_expr↱
expr↱
seq_expr

- line 1:6-7 EQUAL↱
strict_binding

- line 1:4-5 val_ident↱
let_binding_body_no_punning↱
list(post_item_attribute)↱

let_binding_body
- line 1:3-3 rec_flag
- line 1:3-3 list(attribute)
- line 1:3-3 ext
- line 1:0-3 LET↱

let_bindings(ext)↱
list(structure_element)↱

structure_item↱
list(structure_element)↱
structure

- entrypoint implementation

Figure 8.9: Trace of the parser’s configuration immediately before “;”

can solve this. We query the interpreter again for the possible reductions by feeding
it the prefix of the input that precedes the ;. The trace is given in Figure 8.9.

Looking at the reductions, structure_item is a sensible choice. This nonterminal
is responsible for recognising a single definition in a structure. If a prefix reduces to
a structure_item, it forms a valid definition. We get this clause:

| [structure_item]; semi=SEMI; [let_bindings(ext)]
{ "Expecting 'in' after let binding(s) in an expression,\n\

though the error might be caused by the ';' at " ^
string_of_location $startloc(semi) }

Indentation-based heuristic Figure 8.10 shows a refinement using indentation to
guess the user’s intent. If the let-bindings are indented at the same level as the pre-
vious definition, the ; is likely the culprit. But if the let-bindings are more indented,
maybe they really are intended to be local definitions and in is missing.

We decided not to use this heuristic and always give the same message. This can
be reconsidered if users report that the situation is still confusing.
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| l1=[structure_item]; semi=SEMI; l2=[let_bindings(ext)]
{ if $startloc(l1).pos_cnum < $startloc(l2).pos_cnum then

(* less-indented: 'in' is more likely *)
"Expecting 'in' after let binding(s) in an expression,\n\
though the error might be caused by the semicolon at " ^

string_of_location $startloc(semi)
else
(* same indentation: focus on ';' *)
"The ';' at " ^ string_of_location $startloc(semi) ^
" is likely to be incorrect. Otherwise, \

'in' is expected after the let binding."
}

Figure 8.10: Using indentation to choose an explanation

A problematic variation The following code2 exhibits a closely related problem
that is not covered by our previous pattern:

let x = foo; 5 +
let y = 6
let z = 7

The error is still detected when reaching the third let. Finishing the second let-
binding is a possible but improbable fix. Nesting let-bindings inside operator ap-
plication is very unusual in OCaml:

let x = foo; 5 + let y = 6 in y

A more likely explanation is that the programmer was interrupted while writing the
addition on the first line. The right hint is to finish it by adding an expression. Guided
by the interpreter, we find that the pattern expr; PLUS; [let_bindings(ext)] recog-
nises this situation. However, it is too specific: what if the user had written 5 - in-
stead?

We decided to point out the location that precedes the let-binding. The user is
more likely to find a solution if they know where an expression was expected. This
more general clause captures this:

| loc=_; / expr : _* . expr; [let_bindings(ext)]
{ "Expecting 'in' after let binding(s) in an expression.\n\

This might be due to the unterminated expression at " ^
string_of_location $endloc(loc) }

It recognises incomplete let-bindings in a context where an expression is expected
and reports the location of whatever precedes the let-bindings.

Parameters of a data constructor

Defining a new sum type in OCaml looks like:

2Thanks to Ty Overby for reporting this case
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type a_new_type = A of string | B of string * string

The sum type is named a_new_type, and it has two data constructors: A that ex-
pects a string argument, e.g. A("foo"), and B that expects two string arguments, e.g.
B("bar", "baz"). The syntax of parameters looks a lot like a type expression, so a
user might be tempted to use an arrow type. Let’s try with the OCaml top-level:

# type another_type = C of int -> int;;
^^

Error: Syntax error

The example is rejected, even though int -> int is a valid OCaml type denoting
functions from integers to integers. In reality, only a subset of type expressions are
accepted in this position. To understand why, let us take another look at B: we said
that it expects two arguments. But string * string commonly denotes a tuple of
two strings: a single argument that is a pair of strings. The syntax of parameters re-
purposes * for the introduction of multiple parameters. Since in the syntax of types,
* binds tighter than ->, it is safer to reject ->. Otherwise, consider this type definition:

type worse_type = D of int * int -> int * int

Is D expecting three arguments (an int, an int -> int function and another int),
or a single function of type (int * int) -> (int * int)? The grammar was designed
to reject this ambiguous notation, forcing the user to add parentheses. However,
there is no error message to explain this decision to the user, which can arguably be
confusing.

As before, we give the input to the interpreter to visualise the viable prefix and get
a sense of the possible reductions:

$ lrgrep-ocaml-interpreter -
type worse_type = D of int * int -> int * int
File "<stdin>", line 1, characters 33-35,
parser stack (most recent first):
- line 1:29-32 LIDENT

[mk_longident(mod_ext_longident,LIDENT): LIDENT .]↱
mk_longident(mod_ext_longident,LIDENT)↱
type_longident↱
atomic_type

- line 1:27-28 STAR
- line 1:23-26 reversed_separated_nonempty_llist(STAR,...)↱

constructor_arguments↱
reversed_separated_nonempty_llist(STAR,atomic_type)

- line 1:20-22 OF
...

The confusing dialect of type expressions starts after the of keyword, so there
is no point in looking deeper in the stack. We can see that the input reduces to
constructor_arguments. This nonterminal recognises the dialect we are interested
in: sequences of types separated by *, without arrows.
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If parsing failed after recognising valid arguments and looking ahead at ->, rep-
resented by the terminal MINUSGREATER in OCaml grammar, then we can confidently
suggest the user put parentheses:

| [constructor_arguments] @ MINUSGREATER
{ "In constructor arguments, arrow types should \

be wrapped between parentheses." }

Robust handling of the constructor_arguments dialect

Now that we have identified a subtlety in the grammar, we take some time to consider
the possible variations.

The syntax of arrow types also recognises labelled arguments, as in a:int -> int,
and optional arguments, as in ?a:int -> int. By reading the grammar and looking
at the output of the interpreter, we end up with two additional clauses:

| [constructor_arguments]; STAR; LIDENT @ COLON
{ "This looks like a labelled argument. \

In constructor arguments, arrow types should \
be wrapped between parentheses." }

| [constructor_arguments]; STAR @ QUESTION
{ "This looks like an optional argument. \

In constructor arguments, arrow types should \
be wrapped between parentheses." }

We do not know if the user intended to introduce an arrow type: the parsing failed
before reaching the MINUSGREATER terminal. Our message starts by explaining what
we identified, a labelled or optional argument, to prevent confusion.

OCaml also supports GADT constructors, introduced by a slight syntax variant.
We are reminded of them by searching for the references to constructor_arguments
in the grammar:

| OF constructor_arguments
| COLON constructor_arguments MINUSGREATER

atomic_type %prec below_HASH

The second flavour also repurposes MINUSGREATER. In this case, the parser ac-
cepts the MINUSGREATER and fails after, so our first clause does not cover the case. We
can anticipate some possible failures:

• The rule for GADT allows a single MINUSGREATER (e.g., type a = D : t1 -> t2).
A second MINUSGREATER after the atomic type is rejected, as in:
type a = D : t1 -> t2 -> t3.

• Tuples are not recognised by atomic_type either, so the parser also fails if the
user writes a tuple, introduced by *.
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| COLON; constructor_arguments; MINUSGREATER;
[atomic_type] @ MINUSGREATER

{ "In constructor arguments, arrow types should \
be wrapped between parentheses." }

| COLON; constructor_arguments; MINUSGREATER; [atomic_type] @ STAR
{ "A tuple cannot appear in this position. \

If you intend to introduce a functional argument \
returning a tuple, wrap the function type between \
parentheses." }

8.1.5 Future work: wording of error messages

In this case study, we concentrated on developing patterns to accurately characterise
errors identified through user reports in the context of the OCaml language. The
design of LRGrep evolved as a direct outcome of this endeavour.

Our initial focus was not on refining the wording of error messages; rather, we es-
tablished a robust framework capable of producing precise error reports, which we
validated through prototyping. However, significant work remains in crafting mes-
sages that maximise user comprehension. Balancing clarity and brevity while cater-
ing to both novice and experienced users presents a complex challenge that requires
meticulous attention.

Future refinement of the error messages will be approached incrementally, in-
corporating feedback from the broader OCaml community to enhance usability and
effectiveness. The real difficulty lies in providing accurate explanations for complex
errors. While we are capable of effectively handling these errors once they are repor-
ted by a user, anticipating and preemptively addressing them remains a significant
challenge. This ongoing process will involve continuous improvement based on em-
pirical data and community feedback to refine the precision and clarity of our error
messages.

8.2 Catala

Catala (Merigoux et al., 2021) is a domain-specific language for implementing legis-
lative texts. The current applications focus on executable translations of tax code.

Its implementation and distribution closely follows those of general-purpose lan-
guages: it comes with a compiler, Catala, and a build system, Clerk. The compiler is
designed around the textbook compilation pipeline: lexer, parser, intermediate rep-
resentations, and multiple backends. It is implemented in OCaml, and the parser
uses Menhir.

However, the target audience includes not only programmers but also lawyers
and policy makers. Consequently, the syntax is relatively verbose, with constructions
inspired by the natural language used in tax code. Attention is paid to ensure that
the tooling is user-friendly for non-experts. The parser relies on Menhir’s message
infrastructure to provide syntax error messages.

https://catala-lang.org/
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Another peculiarity is the multilingual aspect of the pipeline. The language aims
to be usable by non-English speakers, and as of today, the frontend supports French,
English, and Polish dialects. This is achieved by using language-specific lexers tar-
geting the same set of terminals; the parser itself remains unchanged.

Here is an excerpt of Catala code, taken from their homepage:

scope QualifiedEmployeeDiscount :
definition qualified_employee_discount

under condition is_property consequence
equals

if employee_discount >=
customer_price * gross_profit_percentage

then customer_price * gross_profit_percentage
else employee_discount

To validate the design of LRGrep, we translated the error messages of Catala to an
LRGrep specification. There is no plan for the upstream implementation to change
in the short term, but the development team is interested in potential improvements.
More concretely:

• The existing error infrastructure adds maintenance work when evolving the
grammar; it has now stabilised, but in anticipation of future evolutions, re-
moving friction would be beneficial.

• The expressiveness of the current system is limited and rigid; in particular, it
makes experimentation with more specific error messages difficult and leaves
little room for improvement.

The situation is not dire overall. Catala has exhaustive coverage using handwritten
error messages and no further work is required as long as the grammar does not
change. When it does change, Menhir can tell at compile-time how the existing error
messages are affected.

Our work consisted solely in translating the existing error messages to an LRGrep
specification, directly addressing the maintenance concern. As it stands, our fork
offers no observable difference to the user of Catala. For the implementor, however,
our specification is more concise. A single LRGrep pattern can identify a family of
errors that was previously specified by a list of invalid sentences. The expressiveness
concern is also addressed in theory, opening the way for new experiments, but we
limited our work to reproducing existing results.

8.2.1 The current design

The parser and its error messages can be found in the directory compiler/surface,
implemented in the two files parser.mly and parser.messages.

The parser does not use the %on_error_reduce directive. When asked, the de-
velopers of Catala reported that, even after thoroughly reviewing Menhir’s manual,
the advantages and application scenarios of the %on_error_reducedirective remained
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unclear. Therefore, considering Menhir’s automaton generation strategy, the only re-
ductions that can happen prior to an error being reported are default reductions.

The rest of the specification is the .messages file, a Menhir error message file. It is
a list of erroneous inputs followed by messages to report. An entry looks like:

source_file: BEGIN_CODE DECLARATION ENUM UIDENT COLON ALT UIDENT CONTENT
TEXT YEAR

##
## Ends in an error in state: 362.
##
## list(enum_decl_line) -> enum_decl_line . list(enum_decl_line)
## [ SCOPE END_CODE DECLARATION ]
##
## The known suffix of the stack is as follows:
## enum_decl_line
##

expected another enum case, or a new declaration or scope use

The first line means that when trying to parse a source_file (one of the entry-
points of the grammar), the parser fails when reading the sequence of terminals
after the :. More precisely, BEGIN_CODE DECLARATION ENUM UIDENT COLON ALT UIDENT
CONTENT TEXT is a valid prefix, but looking ahead at YEAR immediately after causes
the failure. The comment lines, beginning with #, are generated by Menhir to help
make sense of the situation. This case failed in state number 362. In this state,
list(enum_decl_line) -> enum_decl_line . list(. . .) is an active item, and SCOPE,
END_CODE and DECLARATION are lookahead tokens inherited from the context. In this
state, we know that enum_decl_line is a suffix of the stack.

The message follows. It is hand-written and it accurately reflects the information
known in this state of the automaton: the item tells us that we can recognise another
enum_decl_line, and the inherited look-aheads hint at the other possible continu-
ations.

There are around 260 messages like this one, totalling 4400 lines.

Autosuggestions To run the example through Catala, we translate the terminals
into a valid sentence:

declaration enumeration X : -- X content text year

The actual output is:

[ERROR] Syntax error at token "year"
Message: expected another enum case, or a new declaration or scope use
Autosuggestion: did you mean "declaration", or maybe "--", or maybe "scope"?

The textual error message is completed with suggestions. This part is generated
automatically by querying the parser for valid continuations. We preserve this be-
haviour as is—actually, our work does not require any change to the autosuggestion
algorithm.
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Such suggestions have been formally studied by Sasano and Choi (2021), which
hints at possible improvements such as reminding the user of the syntax of a con-
struction rather than suggesting a single symbol. Some of this information is already
computed by LRGrep and could be exposed to the grammar author in the future. See
Section 9.3.

8.2.2 Prerequisite: preventing regressions

Our goal is to preserve the existing behaviour. The first step is to create a testsuite to
record current messages and check future changes.

The testsuite directly follows the structure of the .messages file. For each entry:

• we generate a Catala file that translates to the same sequence of terminals

• we record the output of the compiler for that failure

Every time the parser changes, we re-run the compiler on each input to check if
the error message has been affected.

Unreachable entries A minor annoyance is that some entries are actually unreach-
able for lexical reasons. Menhir is correct to report that a specific sequence of tokens
will cause a failure, but the actual sequence cannot be produced by Catala’s lexer. The
reason is that Catala supports literate programming. Some tokens change the beha-
viour of the lexer, switching it back-and-forth between a writing mode, in which free
text is accepted, and a programming mode in which the lexical conventions of Catala
apply.

8.2.3 Translating the Specification

To get a rough LRGrep specification from a .messages file, the first step is to translate
each entry into an LRGrep pattern that matches the same state. This is done by turn-
ing the items, listed by Menhir in the comments, into filters. This part can be done
mechanically.

Looking for Terminals

When the dot is on the right side of a terminal, the translation is almost immediate.
For instance, let us consider this entry:

source_file: BEGIN_CODE DECLARATION ENUM UIDENT COLON ALT UIDENT
YEAR

##
## Ends in an error in state: 357.
##
## enum_decl_line -> ALT UIDENT . option(preceded(CONTENT,addpos(typ)))
## [ SCOPE END_CODE DECLARATION ALT ]
##
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## The known suffix of the stack is as follows:
## ALT UIDENT
##

expected a payload for your enum case, or another case or declaration

The item translates to filter:

/enum_decl_line: ALT UIDENT . option(preceded(CONTENT,addpos(typ)))

We also decided to turn the known suffix of the stack into direct matching of symbols.
This is not necessary as filtering is enough to guarantee the intended behaviour. But
it can come in handy to extract semantic information in the future. The resulting
clause is:

| ALT; UIDENT /enum_decl_line: ALT UIDENT . option(preceded(CONTENT,typ))
{ "expected a payload for your enum case, or another case or declaration" }

It can also be the case that multiple items are active in the state reached by an entry.
In this case, we filter for each item. For instance:

| struct_scope_base; DEPENDS
/ struct_scope: struct_scope_base DEPENDS . separated_nonempty_list(. . .)
/ struct_scope: struct_scope_base DEPENDS . LPAREN . . . RPAREN
{ "expected the type of the parameter of this struct data function" }

Looking for Nonterminals

States having a nonterminal as incoming symbol (on the top of stack) require slightly
more work. A parser waiting for input is either in its initial state or has just shifted
a terminal. For a nonterminal to be on the stack, some reductions had to occur and
we simulate them with the reduction operator.

Aside from that, the translation is similar: after reducing, we filter for items. For
instance, this entry:

source_file: BEGIN_CODE DECLARATION STRUCT UIDENT COLON CONDITION LIDENT
YEAR

##
## Ends in an error in state: 300.
##
## struct_scope -> struct_scope_base . DEPENDS separated_nonempty_list(. . .)
## [ SCOPE END_CODE DECLARATION DATA CONDITION ]
## struct_scope -> struct_scope_base . DEPENDS LPAREN . . . RPAREN
## [ SCOPE END_CODE DECLARATION DATA CONDITION ]
## struct_scope -> struct_scope_base .
## [ SCOPE END_CODE DECLARATION DATA CONDITION ]
##
## The known suffix of the stack is as follows:
## struct_scope_base
##
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expected a new struct data, or another declaration or scope use

Which we translate to the clause:

| [struct_scope_base
/ struct_scope: struct_scope_base . DEPENDS separated_nonempty_list(. . .)
/ struct_scope: struct_scope_base . DEPENDS LPAREN . . . RPAREN
/ struct_scope: struct_scope_base . ]
{ "expected a new struct data, or another declaration or scope use" }

When the known prefix contains multiple symbols, one has to be more careful.
Only nonterminals should be included in the reduction. For instance, see the rule
looking for an unclosed parenthesis:

| LPAREN; [expression / expression: LPAREN expression . RPAREN]
{ "unmatched parenthesis that should have been closed by here" }

The LPAREN is also matched, but left out of the reduction. It becomes trickier
when the suffix is made up of multiple nonterminals. This is a problem if either of
these nonterminals recognises ϵ: we cannot tell if both of them are the result of the
reduction, or if the first one was already on the stack before reducing. In this case,
the simplest is to use a wildcard and let LRGrep figure out the possible sequences of
reductions, e.g.:

| [_* /scope_decl_item: scope_decl_item_attribute lident . CONTENT ...
/scope_decl_item: scope_decl_item_attribute lident . CONDITION ...]

{ "expected either 'condition', or 'content' \
followed by the expected variable type" }

Ordering Clauses

After the translation, we have a list of clauses, one for each .messages entry. Each
clause identifies the same state as the entry it is translated from, but it might also
recognise more states. In this case, the textual ordering rule applies: the first rule to
match a situation is retained.

This is not the meaning of the original .message entries which matched a single
state each. To recover this behaviour, we used a few heuristics. We put the clause not
involving reduction (those matching terminals) before those matching reductions
(matching nonterminals). Reducing generalises a pattern and is likely to match more
situations. Then, inside each group, we put the clauses matching more items first.
Pattern /A: a . b /B: a . c is strictly more restrictive than pattern /A: a . b. If
/A: a . b comes first, the second will never match.

After that, we proceeded by trial and error, reordering clauses until the behaviour
was identical to the reference tests.

The problem has to do with reductions: Menhir reduces before looking for an
error message. The default reduction optimisation imposes a first set of reductions.
Then the parser can specify and order other reductions that should be applied with
the %on_error_reduce directive. The sequence of reductions is fixed at compile-time
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and independent of the error message. LRGrep takes a different stance: rather than
ranking reductions, the specification ranks the error messages.

We managed to reproduce the original behaviour after a few iterations. While the
translation of the error cases of a .messages file to error patterns can be done mech-
anically, we do not have an automated solution to order the resulting clauses yet.
This is not an ideal situation but it was sufficient and quick enough for this problem.
In principle, it is possible to automate this part and we leave this for future work.

Simplifying and sharing patterns

Once we are sure to preserve the existing behaviour, we can simplify the specification
to make it more readable.

Although the .messages had 260 entries, it had only 160 unique error messages.
We used or-patterns to factorise clauses with the same message. For instance, clauses
catching an error after a PLUS or a MULT were shared using:

| PLUS / expression: expression PLUS . expression
| MULT / expression: expression MULT . expression

{ "expected an expression" }

Another simplification was to remove useless item filters. For instance, for an
if-then-else, we had the following clause:

[expression
/ expression: expression . DOT qlident
/ expression: expression . OF funcall_args
/ expression: expression . WITH constructor_binding
/ expression: expression . CONTAINS expression
/ expression: expression . FOR lident AMONG expression
/ expression: expression . MULT expression
/ expression: expression . DIV expression
... (* going through all binary operators *)
/ expression: IF expression . THEN expression ELSE expression
/ expression: expression . FOR lident AMONG expression SUCH THAT expression]
{ "expected the \"then\" keyword as the conditional expression is complete" }

The only relevant item is expression: IF expression . THEN expression ELSE expression,
and this is reflected in the error message: we are looking for a then keyword, the rest
is an artefact of the automaton extraction. In principle, LRGrep could warn the user
when some items do not contribute to reducing a set of situations, but we have not
implemented this feature yet. This clause simplifies to:

[expression / expression: IF expression . THEN expression ELSE expression]
{ "expected the \"then\" keyword as the conditional expression is complete" }

Finally, repeating all symbols in an item that come after a . is rarely useful. A
pattern like:

| /expression: lident AMONG expression SUCH . THAT expression IS MAXIMUM OR IF
COLLECTION EMPTY THEN expression
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/expression: lident AMONG expression SUCH . THAT expression IS MINIMUM OR IF
COLLECTION EMPTY THEN expression

Simplifies to:

| /expression: lident AMONG expression SUCH . THAT expression ...

Final specification

We end up with a 550 lines long specification file. It is a list of clauses, whose error
messages read like a transcription of their pattern most of the time. Here is a short
excerpt:

...
| /assertion: VARIES . _ WITH_V expression _

{ "expecting the name of the varying variable" }
| /scope_item: ASSERTION . assertion

{ "expected an expression that should be asserted during execution" }
| /definition: _ _ DEFINITION _ _ _ _ DEFINED_AS . expression

{ "expected an expression for the definition" }
...

The specification is short and declarative enough to be readable without having
to continuously look at the parser’s grammar to figure out what is going on. Mainten-
ance has been light so far, though our experience is too brief to draw any conclusion.

8.3 Elm

Elm (Czaplicki and Chong, 2013) is a general-purpose, purely functional program-
ming language targeting web applications. It gained recognition for popularising the
“Elm architecture”, a widely adopted approach to building reactive user interfaces.
Our focus here lies on its compiler. To ensure maximum accessibility, special atten-
tion has been given to error messages, both syntactic and semantic. Notably, the
compiler endeavours not only to explain the detected errors but also to clarify the
expected usage of the language within the identified context.

The compiler’s error messages are highlighted as one of its key strengths, which
prompted us to investigate whether we could reproduce these syntax errors with a
declarative specification. We deemed it worthwhile to explore whether LRGrep could
effectively replicate Elm’s approach in presenting clear and informative error notific-
ations.

8.3.1 Elm’s Syntax

There is no established reference grammar for the Elm programming language; it is
entirely defined by its implementation and evolves with each version, rendering it
somewhat unstable as new versions may introduce significant syntax changes, par-
ticularly in advanced features. The core remains relatively stable, however. This
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makes it challenging to develop an independent parser, as attempts at formalising
the grammar available online are limited and outdated. Official documentation is
minimal, focusing primarily on examples without explicitly outlining the syntax of
various constructs.

Consequently, our study involved a detailed examination of the Elm compiler’s
implementation to gain a comprehensive understanding of its grammar.

Syntax errors are represented by an appropriate algebraic type and generated
by the parser upon encountering an error. These errors are then propagated to be
handled by an error management infrastructure shared by the different compilation
passes.

8.3.2 An LR Grammar for Mini-Elm

Given that LRGrep is specifically designed for LR grammars, we created our own for
the Elm language. The development process involved several sources:

• Incomplete existing grammars: we started by examining these resources as a
foundation.

• The compiler’s changelog: this provided insights into the evolution of the lan-
guage syntax.

• Popular libraries, maintained by active Elm users: these served as practical
examples and validation for our work.

The libraries not only helped us to adapt and refine the grammar but also val-
idated our alternative implementation, which we named Mini-Elm. Our focus was
on the subset of the language used in those libraries, though many features were
covered, indicating that a significant portion of Elm’s syntax is represented.

Thus, we have developed an LR grammar for (a subset of) Elm, which, to the
best of our knowledge, represents the closest approximation of a reference grammar
for this language. In the following section, we look into some unique aspects of this
implementation.

Indentation-sensitive Grammar

The Elm programming language exhibits sensitivity to indentation, as some syn-
tactic structures depend on the column at which they begin. This is a lexical consid-
eration that goes beyond the formalism of context-free grammars. Fortunately, these
can be encoded by representing some indentation conditions using special termin-
als.

Beginning of Line An Elm source file is composed of a header followed by a se-
quence of declarations. These constructs are mandated to start at the first column,
and they are the only language elements that can begin on the first column.
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grammar:
| BOL module_decl

imports_and_decls
{}

;

imports_and_decls:
| BOL import imports_and_decls
| decls

{}
;

decls:
| EOF
| BOL EOF
| BOL decl decls

{}
;

Figure 8.11: Encoding of beginning-of-line constraints

To encode this structural requirement, we introduce a terminal BOL, short for
beginning-of-line. It signifies that the subsequent terminal starts at the beginning
of the line: BOL is emitted before every terminal that initiates a new line (either at
the beginning of the file or after a "\n" line delimiter) and is not preceded by any
whitespace. Figure 8.11 shows the uses of this terminal in the grammar.

Grammar constructs that can only appear at the beginning of a line are preceded
by the BOL terminal. Inserting these BOL terminals is straightforward: we intercept
the tokens produced by the lexer and insert a BOL whenever a terminal is detected
at the beginning of a line. This adds minimal complexity to the lexer and parser
implementations and ensures that a declaration is accepted if, and only if, it begins
a new line. Any other construct is rejected, eliminating ambiguities.

Nested Layout Contexts Indentation also plays a role in delimiting the branches of
a case analysis and the bindings of a let expression. These constructs do not have
explicit closing delimiters; they are automatically closed when followed by a terminal
less indented than the one that opened the structure. This indentation-based mech-
anism facilitates nesting of such constructions. For instance:

turnLeft direction =
case direction of

North -> West
West -> South
South -> East
East -> North

average numbers =
let

count = List.length numbers
total = List.sum numbers

in
if count > 0 then total / count else 0
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expr:
| "case" expr "of" layout_sensitive(case_branch)+ {. . .}
| "let" layout_sensitive(let_def)+ "in" expr {. . .}

Figure 8.12: Declarative specification of layout-sensitive constructions

In a branch of a case analysis, there is no delimiter to separate the expression
from the next pattern. Typically, the expression should be indented more than the
pattern. The first pattern determines the indentation level, and following patterns
have to begin on the same column. Similarly, in the let binding, there is no explicit
separation between the definitions; numbers continues the previous expression be-
cause it is more indented than count, while total begins a new definition because it
is aligned with count.

To capture this in an LR grammar, we introduce the concept of “layout context”.
A new context starts when entering an indentation-sensitive construct and finishes
when exiting this construct. Each definition of a let-binding has its own context.

When entering a new context, the column of the first terminal of the construct
is recorded. A context is exited when the syntactic construction is complete and fol-
lowed by a terminal on the same or a less-indented column. This necessitates collab-
oration between the lexer and parser: the indentation column is determined during
lexical processing, but entering and exiting a layout context is governed by the parser.

Layout contexts can be nested. The parser maintains a stack of columns for the
active layout contexts. The lexer stores the indentation column of the current looka-
head symbol in layout_column and introduces a LAYOUT_LEAVE terminal when this
column is less than or equal to the column at the top of the layout stack. The in-
dentation stack is managed by these two ϵ-rules:

layout_enter: /*empty*/ { push layout_context !layout_column };
layout_leave: /*empty*/ { pop layout_context };

A higher-order rule is used to enforce a well-bracketed use of the stack:

layout_sensitive(X): layout_enter x=X layout_leave LAYOUT_LEAVE { x };

Parsing an indentation-sensitive construct starts by pushing the indentation level
on the layout stack, and the construct is terminated by a LAYOUT_LEAVE token. Since
the lexer decides to introduce LAYOUT_LEAVE by looking only at the column, it is pos-
sible to introduce one in incorrect situations. The parser is designed to ignore a
LAYOUT_LEAVE in an incorrect context.

Put together, this permits a concise grammar for cases and let-bindings shown in
Figure 8.12.

Operator precedences

Older versions of Elm allowed users to introduce custom operators and to customise
their associativity and priority. To support this in an LR grammar, the expressions are
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parsed in two passes. The LR grammar does not need to be aware of the customisa-
tions: applications of operators are simply parsed as a list of operands and operators,
an “operator soup”. Once recognised, a specialised precedence parser such as Pratt
(1973), or Dijkstra’s shunting yard algorithm, turns the soup into a proper syntax tree.
Such a parser can be efficiently reconfigured dynamically.

Our frontend is still designed to support this feature, even though it was removed
in Elm 0.19. We kept this implementation because it allows for a simple specification
where the LR grammar is unaware of operator precedence. We care only about error
messages which are not affected by the actual priorities in the current implementa-
tions (neither in the reference nor in our prototype).

Thus, all infix binary operators are handled by a single grammatical rule:

expr: app_expr appop expr {}

8.3.3 Error messages for Mini-Elm

In this section, we present a method for automatically generating an error specifica-
tion from a declarative grammar and a reference compiler implementation.

Utilising our LR grammar for Elm along with the enumeration process detailed in
Section 6.2, we produce a set of incorrect sentences that encompass all reduce-filter
patterns (specifically, pairs of these patterns and a corresponding failing lookahead
terminal).

These generated sentences are fed into the Elm compiler using a minimal printer
tailored for invalid inputs. We then analyse the error messages returned by the com-
piler. By relating the error message used to explain an invalid sentence with the
reduce-filter patterns matching this sentence, we are able to infer an error specifica-
tion for the grammar, mimicking the behaviour of the reference Elm compiler.

Elm compiler error reports Figure 8.13 shows the output of the Elm compiler ex-
plaining a syntax error in a simple file. The explanation starts with a review of the
construction being analysed by the parser; here, a let expression. The token as is
highlighted as the invalid lookahead symbol, and the parser suggests that in this
context, the expected keyword is in. Finally, a footnote restates the indentation rules
relevant to this particular syntactic setting.

Printing (invalid) Elm

The enumeration of the automaton’s sentence fragments generates a list of termin-
als, which must be transformed into source code for transmission to the Elm com-
piler. Most terminals are straightforward to represent: keywords are written accord-
ing to Elm lexical rules (e.g., the LET terminal is displayed as let), lowercase iden-
tifiers are denoted by lident, uppercase identifiers by UIDENT, and so on. Semantic
values are not relevant for our purpose—printing enough code to get a syntax error—
so dummy values are used (1 for an integer, etc.).

https://en.wikipedia.org/wiki/Shunting_yard_algorithm
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$ cat Test.elm
module Test.Test exposing (test)

test = let x = 'a' as
x

$ elm make Test.elm
Detected problems in 1 module.
-- LET PROBLEM ----------------------------------------------- src/Test.elm

I was partway through parsing a `let` expression, but I got stuck here:

3| test = let x = 'a' as
^

Based on the indentation, I was expecting to see the `in` keyword next.
Is there a typo?

Note: This can also happen if you are trying to define another value within
the `let` but it is not indented enough. Make sure each definition has
exactly the same amount of spaces before it. They should line up exactly!

Figure 8.13: Submitting an invalid input to the Elm compiler

However, since the syntax is indentation-sensitive, proper handling of whitespace
is crucial. Most terminals are simply separated by a single space, but we must inter-
pret terminals like BOL and LAYOUT_LEAVE as constraints on indentation.

A BOL simply introduces a newline, positioning the next terminal at the start of
the line.

Handling of LAYOUT_LEAVE is more intricate. The printer receives a stream of ter-
minals and knows that a LAYOUT_LEAVE indicates the end of a layout-sensitive con-
struction, but it has no idea where it started and what was the associated indenta-
tion.

We make a simplifying assumption here. Our printer does not handle exiting
from nested layout contexts, which is acceptable because the sentences we generate
only enter nested layout contexts on the path to an error. In practice, this means that
we might miss Elm error messages that depend on an indented construction to be
completely recognised in the valid prefix prior to failing. This was not necessary to
cover all reduce-filter patterns, so we skipped this case.

With this limitation and since layout contexts only occur after terminals LET and
OF, we remember the column at which the most recent of these terminals ended.
A LAYOUT_LEAVE terminal is then printed as a newline followed by the appropriate
number of spaces to ensure that subsequent tokens align with the stored column.

For instance, BOL MODULE UIDENT BOL LIDENT EQUAL LET LIDENT EQUAL LIDENT
LAYOUT_LEAVE LIDENT EQUAL LIDENT LAYOUT_LEAVE IN LIDENT is printed:

module UIDENT
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lident = let lident = lident
lident = lident
in lident

The line breaks and indentation constraints are satisfied; however, no additional ef-
fort or aesthetic refinement is made.

Enumerating Elm sources

The declarative aspect of the grammar makes it easy to use as a generation device.
Since we are interested in the error messages, we use the procedure for enumerating
failing configurations. Indentation sensitivity is transparent to this procedure: BOL
and LAYOUT_LEAVE are treated like other terminals and are automatically placed at
the appropriate locations. The only difficulty was in printing them.

The core loop of the fuzzer proceeds as follows:

• The enumeration procedure from Section 6.2 emits a valid sentence prefix and
lists the lookahead terminals that cause it to fail. The sentence prefix is annot-
ated by the reduce-filter patterns that match it.

• A source file is generated for each lookahead by printing the prefix followed by
the lookahead.

• The compiler is invoked on each source file. We check that all invocations fail
at the expected position. If not, this indicates an error in our grammar and we
have to update it. It could also be that the reference compiler did not satisfy
the viable prefix property, though this never occurred in practice.

• The error messages are parsed, extracting the core of the message from the
variable parts (name of the file, references to positions or identifiers in the
sample source code). The core part is used to populate an error mapping from
an error message to the set of reduce-filter patterns matching sentences that
produce this message.

This pass ends when all sentences have been consumed and classified.
The second pass operates by repeatedly identifying the patterns associated with

a single message in the error mapping.
When a pattern is associated with a single message, it means that all sentences

matched by this pattern receive the same error message. We say that it is a “critical
pattern” since it uniquely determines the error message received by the sentences.
We emit a clause from the pattern and the error message, and remove the message
from the mapping. This potentially unlocks new critical patterns, and we repeat the
procedure until there are no more.

For the reference Elm compiler, the procedure terminates with an empty set of
messages. This indicates that:

• The inferred specification is able to reproduce all syntax error messages.
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• The reduce-filter patterns are sufficiently fine-grained to unambiguously pin-
point an error message. If at some point during the procedure, we had pending
error messages but no critical pattern, it would mean that some information
not captured by a reduce-pattern was used by the Elm compiler to pick an error
message.

This outcome provides strong evidence supporting our approach’s efficacy, though it
does not address all limitations.

First, the precision is inherently limited. Only the sentences in the generated set
were tested—by design of the enumeration procedure, it should be representative of
the language but this offers no guarantee of completeness beyond reduce-filter pat-
terns. For example, the complex errors we wrote for the OCaml language are beyond
the recognition power of reduce-filter patterns, which means that (1) the enumera-
tion procedure is unlikely to generate a sentence stressing them, and (2) they would
not have a “critical pattern”, preventing a clause from being inferred.

Second, while we can cover all error messages generated from our test set, ex-
haustive coverage of errors is not guaranteed. The enumeration procedure produces
sentences sufficient for covering all reduce-filter patterns but the subset of critical
patterns chosen to associate with specific error messages might not cover all cases.
This was not an issue in our (Mini-)Elm case study, nor did we further investigate this
possibility.

If it becomes problematic for another grammar, it should be possible to refine
the enumeration procedure to generate sentences avoiding the critical patterns. The
new sentences lead to a broader and more complete set of test cases, and the pro-
cedure is repeated until exhaustivity is achieved. (The procedure terminates since
there is a finite set of reduce-filter patterns to begin with, and each iteration covers
at least one new pattern).
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Future work

9.1 Tooling: importing Menhir error messages

When porting Catala error handling from Menhir error messages to an LRGrep er-
ror specification, we could automate most of the translation but not the ordering of
clauses. We proceeded by trial and error, refining the order until our specification
reproduced the original behaviour.

This is not a fundamental problem though: it is possible, in principle, to auto-
mate the translation of most error messages to error specifications. We say most
because two cases can be problematic:

• Having two distinct messages for two LR(1) states with the same LR(0) core.

• Not being able to translate certain %on_error_reduce directives because the re-
duction operators are too coarse-grained.

These problems can be worked around, possibly at the cost of making patterns more
complex, but more work is required to give a definitive answer to these questions
and to automate the process.

9.2 Alternative operator: hypothetical future

The present work focused on characterising LR stacks using the “filter” and “reduce”
operators. Filter identifies a situation based on the immediate past and future, ex-
pressed as an LR(0) item. Reduce applies reductions to generalise a situation before
further analysis.

Very early, we observed that composing both operators often led to some redund-
ancies, as in the [E /F → (E · ) ] example. The fact that we are looking for stacks end-
ing with E is specified twice: first for reducing, then as part of matching the imme-
diate past. This is effectively redundant because the only way for /F → (E ·) to suc-
ceed is to reduce E first. We can even let LRGrep infer that by rewriting the pattern as
[_∗ /F → (E · ) ]. This new formulation can be read as “situations matching F → (E · ),
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for any sequence of reductions”, and LRGrep will find that the only solution is when
the placeholder _∗ is instantiated to E .

A compelling alternative could be a hypothetical future operator taking a sequence
of symbols and which matches prefixes for which these symbols constitute a valid
continuation. This generalises the filter operator by looking for arbitrarily long suf-
fixes and not only following immediate transitions (shifts and gotos) but also allow-
ing reductions, as long as they permit the sequence to match.

If we write #α for the hypothetical future α, our two introductory examples be-
come as simple as #i , looking for an integer, and #), looking for a closing parenthesis.
The richer closing pattern parenthesis can be written as l = (E#). For these simple
cases, the specification seems very natural and should be intuitive for grammar au-
thors, even if they are not familiar with the intricacies of LR parsing.

But it is not clear if this generalises as well as our current approach. The complex
OCaml example where we want to detect when a ; changed the meaning of a ‘let‘
and inform the user can, for instance, be rewritten as:

(#LET); semi = SEMI; LET; _∗; #IN

The right part tells us that we are looking for a situation where we expect an IN pre-
fixed by any construction beginning with a LET after a semi-colon, which could be
omitted: before this semi-colon, LETwas a valid hypothetical future (the parentheses
are used to avoid an ambiguity in notation).

Compare this to the current pattern using reductions:

[structure_item ]; semi = SEMI; [let_bindings(ext) ]

The new operator can avoid referring to the nonterminals structure_item and
let_bindings(ext), and use a notation closer to a “lexical” regular expression for
matching the situation. This would be simpler for a beginner user; however, a gram-
mar author should already be familiar with the nonterminals they use in their gram-
mar, and the interpreter facility can helpfully remind them of the nonterminals rel-
evant to a specific situation. However, we also lose some precision here: the loose
specification LET;_∗;#IN could accidentally match more than expected, for instance
when multiple LET are nested on the stack.

Still, we feel that it is worth exploring alternative ways for characterising stacks,
especially if they make simple and common situations simpler to specify.

9.3 Reduction graph and syntactic completions

Sasano and Choi (2021) introduce a framework for suggesting syntactically valid com-
pletions of the current context by dynamically exploring the reductions allowed by
the grammar.

They start by generating a set of simple candidates, made up of the items reach-
able from a stack after following any possible sequence of reductions. By iterating
the procedure, they get nested candidates: for each simple candidate, they simulate
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the impact of the possible completions on the stack (by appending the suffix of the
item to the stack prefix) and generate a new set of simple candidates from the new
stack.

This approach is entirely dynamic, simulating all reductions at runtime. They use
two heuristics to keep this method responsive:

1. One to cut off the work before looking too deep in the stack.

2. One to avoid expansions growing the stack too much by exploring a given
branch too deeply (e.g., suggesting +i + i + i + . . . as a completion for i ).

We suspect that our reduction automata could be a helpful addition to this ap-
proach. The set of simple candidates is trivial to compute from the reduction auto-
maton, in a time linear to the depth of the LR stack. For nested candidates, we con-
jecture that the reduction automaton could be extended to produce a finite descrip-
tion of the set of all candidates, providing an exact solution rather than relying on
two heuristics.

Simulating the completion of all items can be achieved by adding transitions
Suffix(s,~s′,T ′′) ϵ−→ Reduce(s,~s′,T, A,α) for all A →α ·β ∈ items(top(s~s′)),α 6= ϵ to the
reduction automaton. For each item, the α part represents a prefix that was already
recognised, and β a candidate for completion.

Given a stack~s, the nested candidates can be constructed by following all paths
labelled ~s (from right to left) and, along each path, collecting the β parts of the re-
ductions visited.

9.4 Application to GLR

GLR extends the recognition power of LR parsers to all context-free grammars by al-
lowing non-deterministic actions. Conflicts are kept and, at runtime, conflicting ac-
tions are explored in parallel: the stack is cloned, and the different continuations are
explored independently. The parser configuration consists of a set of stacks rather
than a single stack, with a clever representation that is compact and shares as much
work as possible between the different continuations (Tomita, 1991).

For each input token, all stacks are advanced in a lockstep fashion. Parsing suc-
ceeds when at least one of the stacks accepts the input, though multiple ones might
do so, and the result is generally a set of semantic values issued from a forest of de-
rivation trees.

If one of the stacks rejects a token, it is removed from the set. Parsing fails if the
set of stacks ends up empty. The configuration immediately preceding the failure—
the one that we would like LRGrep to analyse to produce an error message—contains
a non-empty set of stacks.

LRGrep as it is should adapt quite seamlessly to this setting by treating each stack
independently:
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• The compilation strategy and, more generally, the analysis of reductions are
not affected by the move to GLR; even though there is a set of stacks, an indi-
vidual stack is still a well-formed LR stack. That multiple actions might apply
at any given time might lead to marginally larger graphs but does not funda-
mentally change the analyses.

• Matching multiple stacks leads to multiple error message candidates, though
the existing candidate ranking mechanism (using textual precedence) should
extend reasonably well to this setting. If the highest ranked candidate matches
multiple stacks, picking one arbitrarily leads to selecting the same error mes-
sage, though the semantic values might be affected.

However, the current LRGrep is completely oblivious to correlations between the
different stacks. It can happen that two or more stacks, even if they are treated inde-
pendently by the parser, can only appear or disappear from the set of active stacks at
the same time. Although the example is a bit contrived, consider an arithmetic gram-
mar not enforcing the associativity of the + operator. For every nested occurrence of
+, a GLR parser will consider both right-associative and left-associative interpreta-
tions. The set of stacks will grow exponentially in the number of +, but the correct
language will be recognised.

In fact, past the initial divergence, the suffix of the input is interpreted identically,
and this high correlation allows a GLR parser to handle this case efficiently.

LRGrep cannot be statically aware of this correlation, and it is likely impossible
to properly account for it. GLR parsers can handle arbitrary CFGs. In general, estab-
lishing static correlations between the stacks occurring in non-deterministic pars-
ing would allow reasoning about ambiguities, which is known to be undecidable for
CFGs. In LRGrep, this will mainly manifest in the exhaustive coverage analysis. For
instance, if we provide an error message focusing specifically on the left-associative
interpretation of +, the coverage analysis will complain that there is no error message
when a stack that followed the right-associative interpretation fails. Even though, at
runtime, there will always be a left-associative stack in the set from which to produce
an error message.

So, in the GLR setting, we have to give up the soundness of the exhaustivity ana-
lysis and accept some false negatives. We have not experimented with this, but it is
unlikely to be a problem in practice, especially for realistic grammars and not con-
trived examples that are purposefully ambiguous.

On the other hand, if a case can be made that accounting for the correlation
between stacks allows for significantly improving error messages in specific situ-
ations, it should be possible to extend the matching language with an operator for
parallel matching of stacks. For instance, with a pattern p1&p2 that succeeds when
one stack of the set matches p1 and another matches p2. This would significantly
complicate the run-time matching strategy but we suspect the impact on the rest of
the theory to be quite contained. Such a pattern would be out of reach of the cover-
age analysis.

It is worth mentioning Brunsfeld et al. (2020), a full-featured implementation
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of GLR with incremental and error-resilient parsing, supported by GitHub. It has
received a lot of attention lately and is becoming a solution of choice for provid-
ing syntax highlighting and other syntax-directed services to programmers’ editors.
Adapting LRGrep to Tree-sitter runtime would allow providing detailed syntax-error
messages in these contexts, benefiting a much wider audience than the present ex-
periment.

9.5 Imperative Implementation

An LRGrep matching program expects to be fed the stack as it was after the last shift
transition, prior to any reduction (a configuration in which the current state is what
we called a Wait state). This is trivially the case for canonical parsers which only
reduce when it is known that this will lead to a valid outcome—eventually shifting
the lookahead token or accepting the input. However, practical LR parsers resort to
optimisations that result in reductions being applied before the validity of the looka-
head token can be determined:

• Default reductions, which are independent of the lookahead symbol and can
be applied even before the parser is fed the next lookahead token.

• “Fall back” or “spurious” reduction actions used to make the transition table
sparser; these reductions are safe because even if it is not known at the time
of the reduction whether the lookahead token is valid, it will be checked again
after reducing; the worst that can happen is that an invalid lookahead symbol
is rejected after a few extra reductions.

These two optimisations conflict with the LRGrep approach, as they damage the
stack. This is a serious problem in practice because the main implementations of
LR parsers are imperative and use a destructive implementation of the stack for per-
formance reasons.

We do not have a clear answer to this problem, but we have two approaches in
mind which should have a limited impact on performance:

• Remembering the damage done to the stack by keeping a scratch buffer while
reducing and, in case of an error, applying LRGrep to the scratch buffer first
(and switching to the main stack once reaching the end of the damaged suffix).

• Not applying reductions on the stack but instead preparing an “action plan”
on the side, and committing it only when determining that the input token is
valid; if it is not, the undamaged stack can be sent to LRGrep.

Both approaches should be reasonably efficient, but actual performance comes
down to implementation details and microarchitectural considerations: remember-
ing the damage translates to extra stores, but they do not introduce new dependen-
cies and do not affect control flow; preparing an action plan should fit into a tight
loop that does not need to call external code (e.g., no semantic actions), but this
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loop depends heavily on the transition table and lookups might cause stalls and of-
fer fewer opportunities for instruction-level parallelism than interleaving transitions
with semantic actions.

As usual, ϵ-rules complicate matters: without them, the stack decreases mono-
tonically during reductions; with ϵ-rules, the stack can temporarily grow. Fortu-
nately, this can be worked around by performing an ϵ-closure of the involved reduc-
tions during compilation, as is done when constructing the reduction automaton.
An LR parser generator tuned for high performance should have similar facilities that
could be leveraged when integrating LRGrep.



Conclusion

This dissertation challenges the notion that LR parsers are less capable than altern-
atives for reporting accurate syntax errors for programming languages. Our central
thesis posits that the LR formalism not only enables efficient parsing of practical lan-
guages but also retains decidable properties that make it suitable for dynamic and
static analysis of syntax errors. I introduce a dialect of regular expressions for spe-
cifying and handling these errors, demonstrating the potential of LR parsers to offer
precise and maintainable error messages.

The core components of this DSL—filters and reductions—allow for fine-grained
classification and generalisation of grammatical contexts, enabling the identification
of specific positions within parsing rules while abstracting over specific nontermin-
als. This classification is applied to the stack of a failing LR parser to select an error
message. The efficient recognition of these constructs through compilation to finite
automata shows that our approach is amenable to a compact and performant im-
plementation.

After recognition, I tackled the problem of statically reasoning about syntax er-
rors. Addressing the challenge posed by conflict resolution (which removes certain
transitions and actions in an LR parser), I have developed an efficient reachability
analysis that identifies the reachable configurations of LR parsers. This enables the
complete and sound analysis of LR stacks and failing configurations, with two prac-
tical applications: enumeration of erroneous sentences and checking the exhaustive
coverage of syntax errors.

I implemented these compilation and static analysis schemes and validated them
with three case studies:

1. Enhancing the syntax error reporting capabilities of OCaml’s reference parser.

2. Porting Catala’s error handling mechanisms from Menhir to LRGrep, achieving
compatibility with a semi-automatic import of Menhir’s example-based error
message specifications.

3. Replicating Elm’s renowned syntax error reports, using our tools to infer an
error specification while using the reference implementation as a black box.

These case studies validate the effectiveness of our proposed methods and il-
lustrate their broad applicability across different programming languages and envir-
onments, paving the way for improved parser design and syntax error handling in
future language implementations. The findings herein advocate for a reevaluation
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of LR parsers as valuable tools not only for parsing efficiency but also for sophistic-
ated error reporting, bridging a gap between the formalism and the practical needs
of compiler developers.
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Appendix A

A greedy solution for parallel moves

We propose a translation scheme to implement parallel moves with the instruction
set of the abstract machine from Section 4.6. The code produced uses the Swap in-
struction and is linear in the size of the (graph of the) transfer function. It is not
optimal as it can generate some unnecessary temporary moves, but it is simple and
sufficient for our needs. It emits instructions that realise a finite map f : [0;m[→
[0;n[∪ {>,⊥} that describes register transfers and updates, for some m,n ∈N (intro-
duced in Section 4.4.3).

We split the work into two passes: the first to handle shuffling of registers, and
the second one to implement setting, duplicating and clearing the other registers.

In the intermediate steps, some registers might have been shuffled from their
original position. The main idea is to maintain an auxiliary array aux of n integers to
record where the original value of a register can be found. We also use two arrays of
n booleans: mark to track if a register value is used at least once and dup for register
values used more than once.

Initialisation code is provided in Figure A.1. First, aux is set such that all register
values are at their original position; mark and dup are cleared.

The transfer function is scanned to determine which register values are needed
once or more.

After that we can emit instructions:

• The first pass in Figure A.2 moves values used at least once to their first target
register.

• The second pass in Figure A.3 updates the remaining registers, copying their
value from the first target for values used multiple times, and updating or clear-
ing the other ones.
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var aux: array[n] of integer
mark, dup: array[n] of boolean

for i = 0 to n do
aux[i] = i
mark[i] = false
dup[i] = false

done

for i = 0 to m do
let j = f(i)
if j ∈ N then

if not mark[j] then
mark[j] = true

else dup[j] = true
end

done

Figure A.1: Initialisation

for i = 0 to m do
let j = f(i)
if j ∈ N and mark[j] then
mark[j] = false
j = aux[j]; Find the actual position of the value
if i != k then ; The value is not in the expected position

if i <= n and (mark[i] or dup[i]) then ; Value i is needed later:
emit Swap(i, j) ; Swap it
aux[i] = j ; Remember the new position of value i

else
emit Move (i, j) ; Overwrite register i

end
aux[j] = i; Remember the position of value j

end
end

done

Figure A.2: First pass: move values used at least once to their first target register

for i = 0 to m do
let j = f(i)
if j ∈ N then

if not mark[j] then
mark[j] = true; Skip the first occurrence

else
j = aux[j]; Find the actual position of the value
emit Move (i, j)

end
else if j = ⊥ then emit Clear i
else if j = > then emit Store i
end

done

Figure A.3: Second pass: set, clear or duplicate remaining registers
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